Experimental Validation of Minimax Entropy Principle in Ultrasound Images

Author(s):  
Neha Mehta ◽  
Svav Prasad ◽  
Leena Arya

Ultrasound imaging is one of the non-invasive imaging, that diagnoses the disease inside a human body and there are numerous ultrasonic devices being used frequently. Entropy as a well known statistical measure of uncertainty has a considerable impact on the medical images. A procedure for minimizing the entropy with respect to the region of interest is demonstrated. This new approach has shown the experiments using Extracted Region Of Interest Based Sharpened image, called as (EROIS) image based on Minimax entropy principle and various filters. In this turn, the approach also validates the versatility of the entropy concept. Experiments have been performed practically on the real-time ultrasound images collected from ultrasound centers and have shown a significant performance. The present approach has been validated with showing results over ultrasound images of the Human Gallbladder.

Author(s):  
Sheela S ◽  
Sumathi M ◽  
Nirmala Priya S ◽  
Sangeeth Kumar B ◽  
Yukesh Kumar S J ◽  
...  

Infertility is a common and important problem of many women in today’s life. Poly cystic ovarian syndrome (PCOS) is the origin of the infertility. This endocrine disorder affects women’s reproductive system. It also causes other problems like cardiovascular diseases, diabetes mellitus, etc. Among the various imaging modality, Ultrasound plays a major role in the diagnosis of PCOS since it is harmless, painless and non-invasive. Even though ultrasound image has so many advantages, due to poor image quality, inherent noise, overlapping of follicles and operator’s lack of prior knowledge, analyzing the characteristics of the scanned image is more challenging. Now a day, several image processing techniques are available to make this process easier. A commonly used segmentation method is Otsu’s threshold-based segmentation technique. But, it is suitable only for the high contrast image. To make this method suitable for all the images, Adaptive Otsu’s Technique (AOT) is developed and also achieved more desirable segmentation of the region of interest (ROI). In MIMO system , mutual coupling degrades the antenna performance to overcome this we go for circular polarization. In this paper, compact circular polarization and planar


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 982
Author(s):  
Xiaoyan Peng ◽  
Rongguang Zhang ◽  
Chen Wang ◽  
Feiyan Yu ◽  
Mingyang Yu ◽  
...  

Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L. lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes’ migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes’ movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB’s potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.


2020 ◽  
Vol 28 (5) ◽  
pp. 739-750
Author(s):  
Morteza Ghaderi Aram ◽  
Larisa Beilina ◽  
Hana Dobsicek Trefna

AbstractIntegration of an adaptive finite element method (AFEM) with a conventional least squares method has been presented. As a 3D full-wave forward solver, CST Microwave Studio has been used to model and extract both electric field distribution in the region of interest (ROI) and S-parameters of a circular array consisting of 16 monopole antennas. The data has then been fed into a differential inversion scheme to get a qualitative indicator of how the temperature distribution evolves over a course of the cooling process of a heated object. Different regularization techniques within the Tikhonov framework are also discussed, and a balancing principle for optimal choice of the regularization parameter was used to improve the image reconstruction quality of every 2D slice of the final image. Targets are successfully imaged via proposed numerical methods.


Pancreatology ◽  
2021 ◽  
Vol 21 ◽  
pp. S89-S90
Author(s):  
K. Lesko ◽  
G. Varvanina ◽  
D. Bordin ◽  
E. Dubtsova ◽  
M. Malykh ◽  
...  

2004 ◽  
Vol 08 (06) ◽  
pp. 297-308

Ai Scientific Awarded R&D Start Grant. CSIRO Drug Effective against Bird Flu. AustCancer Commences Anti-cancer Vaccine Phase II Trial. New Approach against Cancer. Non-invasive Cancer Test. China’s Chemical Pharmaceutical Sector Q1 2003 Performance. International Generic Companies Target India’s Manufacture Infrastructure. Cardinal Health Sets up Regional Office in Singapore. BRV Enters Agreement with Genedata.


2021 ◽  
Vol 21 ◽  
Author(s):  
Sara Memarpour ◽  
Ghazaleh Khalili-Tanha ◽  
Awa Alizadeh Ghannad ◽  
Masoud Sharifian Razavi ◽  
Mona Joudi ◽  
...  

: Gastrointestinal (GI) cancer is one of the most common cancers globally. Genetic and epigenetic mechanisms are involved in its pathogenesis. The conventional methods for diagnosis and screening for GI cancers are often invasive and have other limitations. In the era of personalized medicine, a novel non-invasive approach called liquid biopsy has been introduced for the detection and management of GI cancers, which focuses on the analysis of circulating tumor cells (CTCs) and circulating cell-free tumor DNA (ctDNA). Several studies have shown that this new approach allows for an improved understanding of GI tumor biology and will lead to an improvement in clinical management. The aim of the current review is to explore the clinical applications of CTCs and ctDNA in patients with GI cancer.


2021 ◽  
Vol 6 (7) ◽  
pp. 107-113
Author(s):  
Charles Nnamdi Udekwe ◽  
Akinlolu Adediran Ponnle

The geometry of the imaged transverse cross-section of carotid arteries in in-vivo B-mode ultrasound images are most times irregular, unsymmetrical, full of speckles and usually non-uniform. We had earlier developed a technique of cardinal point symmetry landmark distribution model (CPS-LDM) to completely characterize the Region of Interest (ROI) of the geometric shape of thick-walled simulated B-mode ultrasound images of carotid artery imaged in the transverse plane, but this was based on the symmetric property of the image. In this paper, this developed technique was applied to completely characterize the region of interest of the geometric shape of in-vivo B-mode ultrasound images of non-uniform carotid artery imaged in the transverse plane. In order to adapt the CPS-LD Model to the in-vivo carotid artery images, the single VS-VS vertical symmetry line common to the four ROIs of the symmetric image is replaced with each ROI having its own VS-VS vertical symmetry line. This adjustment enables the in-vivo carotid artery images possess symmetric properties, hence, ensuring that all mathematical operations of the CPS-LD Model are conveniently applied to them. This adaptability was observed to work well in segmenting the in-vivo carotid artery images. This paper shows the adaptive ability of the developed CPS-LD Model to successfully annotate and segment in-vivo B-mode ultrasound images of carotid arteries in the transverse cross-sectional plane either they are symmetrical or unsymmetrical.


2018 ◽  
Vol 4 (1) ◽  
pp. 331-335
Author(s):  
David Schote ◽  
Tim Pfeiffer ◽  
Georg Rose

AbstractComputed tomography (CT) scans are frequently used intraoperatively, for example to control the positioning of implants during intervention. Often, to provide the required information, a full field of view is unnecessary. I nstead, the region-of-interest (ROI) imaging can be performed, allowing for substantial reduction in the applied X-ray dose. However, ROI imaging leads to data inconsistencies, caused by the truncation of the projections. This lack of information severely impairs the quality of the reconstructed images. This study presents a proof-of-concept for a new approach that combines the incomplete CT data with ultrasound data and time of flight measurements in order to restore some of the lacking information. The routine is evaluated in a simulation study using the original Shepp-Logan phantom in ROI cases with different degrees of truncation. Image quality is assessed by means of normalized root mean square error. The proposed method significantly reduces truncation artifacts in the reconstructions and achieves considerable radiation exposure reductions.


Sign in / Sign up

Export Citation Format

Share Document