Recent Advances in Preparation and Application of Functionalized Mesoporous Materials

Author(s):  
Jianghong Liu ◽  
Xiaohang Wei ◽  
Dandan Yuan ◽  
Jingwei Ren ◽  
Jian Xue

Functionalized mesoporous materials are widely used in the environmental field due to their excellent adsorption and catalytic properties. The materials with different functions are obtained by modifying mesoporous materials. In this paper, the preparation methods of functional mesoporous materials with functional groups, metal doping and acid modified were presented. This review focused on the main features and applied prospects of functionalized mesoporous materials under three producing methods. Recent advances of functionalized mesoporous materials in the fields of adsorption and catalysis have been summarized. Adsorption mainly refers to the treatment of heavy metals, organic contaminant, dyestuff and CO2. Finally, the trends and application foreground of functionalized mesoporous materials were elaborated in this paper, which provided reference and guidance for the development of functional mesoporous materials.

2013 ◽  
Vol 33 (2-3) ◽  
pp. 139-160 ◽  
Author(s):  
Jing Xu ◽  
Hongda Lv ◽  
Sheng-Tao Yang ◽  
Jianbin Luo

AbstractGraphene has attracted great interest for its unique structure, fantastic properties, and wide applications. Among the various applications, graphene-based materials hold great potential as adsorbents in decontaminating water because of the large surface area, diverse functionalities, ease of preparation, and low cost of treatment. Graphene and its composites have been used in treating heavy metals, dyes, pesticide, antibiotics, oils, and so on. In this paper, we reviewed the preparation methods of graphene adsorbents and their applications in water purification. The adsorption behaviors of contaminates on graphene are summarized. The interactions between graphene and contaminates are discussed, emphasizing the influence of functional groups. We also propose some guidelines in designing high-performance graphene adsorbents from the physicochemical perspective.


Author(s):  
Luis A. Segura-Quezada ◽  
Karina R. Torres-Carbajal ◽  
Yuvraj Satkar ◽  
Kevin A. Juárez Ornelas ◽  
Narendra Mali ◽  
...  

: Iodine(III)-based reagents has been broadly used in oxidative reactions for the structural functionalization with several functional groups. Among the more relevant and useful synthetic transformations using these hypervalent γ 3 -reagents, it can be found the fluorination, chlorination, bromination as well as the iodination protocols. Herein, we present some of the most representatives oxidative halogenation procedures of arenes, olefins and alkynes dating from the oldest to the more recent advances in the area, highlighting the discovery and application of new iodine(III)-based halogenating species.


1981 ◽  
Vol 46 (11) ◽  
pp. 2657-2662
Author(s):  
Zdeněk Prokop ◽  
Karel Setínek

Some additional data about properties and applicability of a styrene-divinylbenzene polymer catalyst containing acidic and redox functional groups are reported. It is shown that the catalysts of this type can be prepared reproducibly and exhibit catalytic properties comparable to the properties of noble metal catalysts.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Sang-Ho Chung ◽  
Adrian Ramirez ◽  
Tuiana Shoinkhorova ◽  
Ildar Mukhambetov ◽  
Edy Abou-Hamad ◽  
...  

The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica–magnesia (SiO2–MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2–MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2–MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2–MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.


2020 ◽  
Vol 7 (10) ◽  
pp. 2566-2595 ◽  
Author(s):  
Peng Ge ◽  
Shuli Wang ◽  
Junhu Zhang ◽  
Bai Yang

Recent advances in the development and application of novel anisotropic wetting interfacial phenomena through the use of unique micro-/nanostructures have been summarized.


Author(s):  
H Singh ◽  
Amy Bamrah ◽  
Sanjeev Kumar ◽  
A Deep ◽  
M Khatri ◽  
...  

Recent developments in nanotechnology and engineering have produced a plethora of nanomaterials with amazing physical/chemical properties and enhanced sensing potential for various heavy metals in the environment. Noble metal nanoparticles...


2015 ◽  
Vol 3 (29) ◽  
pp. 15074-15081 ◽  
Author(s):  
Abhijit Biswas ◽  
Subir Paul ◽  
Arindam Banerjee

Peptide functionalized carbon nanodot supported Ru nanodots have been synthesized, which show a remarkable and reusable catalytic activity for the transformation of organic azide to the corresponding amine in the presence of other functional groups in water.


Sign in / Sign up

Export Citation Format

Share Document