magnesium silicates
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 26)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 92 (1) ◽  
pp. 12-31
Author(s):  
Nívea G. Carramal ◽  
Daniel M. Oliveira ◽  
Alessandra S.M. Cacela ◽  
Matheus A.A. Cuglieri ◽  
Natasha P. Rocha ◽  
...  

ABSTRACT Since the discovery of giant Aptian pre-salt reservoirs in Brazilian margin basins, the study of lacustrine carbonates has drawn great attention from the scientific community. Comparatively, minor attention was given to the characterization and genesis of the Mg-silicates (e.g., stevensite, kerolite) which are commonly associated with these carbonates. A systematic petrological study was performed in the Aptian Barra Velha Formation (BVF) within distinct structural compartments of the giant Lula Field in the Santos Basin, in order to recognize the patterns of primary formation and diagenetic alteration of these Mg-silicates. Mg-silicates occur as peloids, ooids, intraclasts, and fine-grained laminated deposits, either mixed in variable proportions with other particles, such as carbonate bioclasts and volcanic rock fragments, or constituting specific intrabasinal deposits. In the BVF interval, clay peloids and laminated deposits are associated with spherulitic and fascicular calcite aggregates, as substrate and hosts for these precipitates. Ooids are interpreted as formed at the sediment–water interface by the nucleation of concentric envelopes on the surface of particles (heterogeneous nucleation), through repeated rolling under gentle wave and current action. Laminated deposits, interpreted as precipitated directly from the water column (homogeneous nucleation) in highly supersaturated and low-hydrodynamic-energy environments, constitute extensive deposits in the BVF. Peloids were probably formed in intermediate energy conditions. Some ooidal arenites show porosity from the dehydration and contraction, and/or the dissolution of ooids. In some rocks, these pores are filled with fibrous calcite, while the remaining Mg-silicates are replaced by dolomite, calcite, or silica. A similar diagenetic pattern occurs in the laminated deposits, where magnesite and dolomite fill shrinkage pores formed along their characteristic wavy laminae. Owing to their elevated solubility, most of the Mg-silicates were dissolved, or intensely replaced by calcite, dolomite, or silica. The detailed petrologic analysis indicates that the original volumes of Mg-silicates were substantially larger, and that their deposition was widespread in the basin, including on structurally high areas. The types and intensity of diagenetic alteration of the Mg-silicate deposits are distinct for each structural compartment, being more intense towards the highs and closer to the overlying evaporites, which imposed a strong influence on reservoir quality.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1334
Author(s):  
Liang Sun ◽  
Huan Zhang ◽  
Zanyang Guan ◽  
Weiming Yang ◽  
Youjun Zhang ◽  
...  

The physical properties of basic minerals such as magnesium silicates, oxides, and silica at extreme conditions, up to 1000 s of GPa, are crucial to understand the behaviors of magma oceans and melting in Super-Earths discovered to data. Their sound velocity at the conditions relevant to the Super-Earth’s mantle is a key parameter for melting process in determining the physical and chemical evolution of planetary interiors. In this article, we used laser indirectly driven shock compression for quartz to document the sound velocity of quartz at pressures of 270 GPa to 870 GPa during lateral unloadings in a high-power laser facility in China. These measurements demonstrate and improve the technique proposed by Li et al. [PRL 120, 215703 (2018)] to determine the sound velocity. The results compare favorably to the SESAME EoS table and previous data. The Grüneisen parameter at extreme conditions was also calculated from sound velocity data. The data presented in our experiment also provide new information on sound velocity to support the dissociation and metallization for liquid quartz at extreme conditions.


Author(s):  
Xun Gao ◽  
Hassnain Asgar ◽  
Ivan Kuzmenko ◽  
Greeshma Gadikota

Author(s):  
Luca Bindi ◽  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
...  

2021 ◽  
Vol 48 ◽  
pp. 101516
Author(s):  
M.I Rashid ◽  
E. Benhelal ◽  
F. Farhang ◽  
T.K. Oliver ◽  
M. Stockenhuber ◽  
...  
Keyword(s):  

2021 ◽  
Vol 317 ◽  
pp. 110946
Author(s):  
Yolanda Aysa-Martínez ◽  
Silvia Anoro-López ◽  
Miguel Cano ◽  
Daniel Julve ◽  
Jorge Pérez ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Sang-Ho Chung ◽  
Adrian Ramirez ◽  
Tuiana Shoinkhorova ◽  
Ildar Mukhambetov ◽  
Edy Abou-Hamad ◽  
...  

The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica–magnesia (SiO2–MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2–MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2–MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2–MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.


Fuel ◽  
2020 ◽  
Vol 277 ◽  
pp. 117900 ◽  
Author(s):  
Greeshma Gadikota ◽  
Juerg Matter ◽  
Peter Kelemen ◽  
Patrick V. Brady ◽  
Ah-Hyung Alissa Park

Author(s):  
Sh. M. Sharafeev ◽  
V. M. Pogrebenkov

The processes of forsterite, enstatite and talc treatment by ammonium fluoride have been studied. The phaseformation processes occurring during firing of fluorinated minerals were studied. It was established that structural silica of minerals reacts with ammonium hydrodifluoride with the formation of ammonium hexafluorosilicate. The sublimation of ammonium hexafluorosilicate leads to remove structural silica from minerals with partial destruction of their structure. The firing of fluorinated minerals leads to their structural transformation with the formation of magnesium nesosilicates and fluoronesosilicates.


Sign in / Sign up

Export Citation Format

Share Document