scholarly journals The Importance of Thermal Treatment on Wet-Kneaded Silica–Magnesia Catalyst and Lebedev Ethanol-to-Butadiene Process

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Sang-Ho Chung ◽  
Adrian Ramirez ◽  
Tuiana Shoinkhorova ◽  
Ildar Mukhambetov ◽  
Edy Abou-Hamad ◽  
...  

The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica–magnesia (SiO2–MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2–MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2–MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2–MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.

2017 ◽  
Vol 268 ◽  
pp. 132-137 ◽  
Author(s):  
Anwar Ali Baqer ◽  
Khamirul Amin Matori ◽  
Naif Mohammed Al-Hada ◽  
Abdul Halim Shaari ◽  
Elias Saion ◽  
...  

A sample thermal treatment technique was utilised to synthesis cerium dioxide (CeO2) nanoparticles, using cerium (111) nitrate as a precursor, Polyvinylpyrrolidone as a capping agent, and deionized water as a solvent. The product underwent calcination treatment of 500, 550, 600, and 650 1C to crystallize the nanoparticles and to remove organic compounds. It was verified by XRD that by varying the calcination temperature, the cubic fluorite structure of CeO2 nanoparticles with pure products was achieved. Furthermore, the crystal sizes of the CeO2 nanoparticles were assessed to be 4 nm for the lowest calcination temperature and 23 nm for the highest calcination temperature. The FESEM micrographs of the CeO2 nanoparticles revealed a structure of CeO2 nanospherical that exhibited a tendency to amalgamate at higher calcination temperatures. The optical characteristics that were evaluated with the help of a UV-Vis spectrophotometer indicated a decrease in the band gap energy with an increase in calcination temperature as a result of the increase in the crystal sizes.


2011 ◽  
Vol 233-235 ◽  
pp. 2252-2257 ◽  
Author(s):  
Yan Ge Zhang ◽  
Jing Chen ◽  
Bao Jun Huang ◽  
Da Peng Li

Mn2O3 Nanorods have been successfully synthesized under mild conditions by hydrothermal route following by thermal treatment at different calcination temperatures. Techniques of XRD, TEM, HRTEM, ED and XPS have been used to characterize the nanorods. The magnetic properties of the Mn2O3 nanorods synthesized at different calcination temperature have been studied using electron paramagnetic resonance (EPR) technique. And the evolved different EPR signals have also been discussed.


2020 ◽  
Vol 7 (1) ◽  
pp. 65-74
Author(s):  
Ahmed Umar ◽  
John T.S. Irvine

AbstractThe effects of catalyst loading, calcination and reaction temperatures on the structural properties and catalytic behavior of Ni/γ-Al2O3 catalyst system in relation to steam reforming of glycerol and catalyst deactivation were investigated. The results showed that catalyst loading, reaction and calcination temperatures had a profound influence on the structure and catalytic activity in glycerol conversion. Use of high calcination temperature (900-1000 °C) led to phase transformation of the active Ni/Al2O3 to less active spinel specie NiAl2O4 that resulted in a successive change of texture and color. The particle size growth and phase change at this temperature were responsible for the catalyst deactivation and low performance especially among the catalyst calcined at high temperatures. Conversely, at low reaction temperatures, catalyst surfaces were marred by carbon deposition. Whilethe polymeric carbon deposited at metal-support interface was associated with low reaction temperatures, high reaction temperatures were characterized predominantly by both amorphous carbon deposited on the active metal surface and polymeric or graphitic carbon deposited at metal-support interface respectively. Calcination temperature showed no significant influence on the location and type of coke deposited on the catalyst surface. Hence, catalyst loading, calcination and reaction temperatures could be tailored to enhance structural and catalytic properties and guard against catalyst deactivation.


Author(s):  
J. Cruz-Reyes ◽  
M. Avalos-Borja ◽  
M. H. Farias ◽  
S. Fuentes

Applications of transition metal sulfides for hydroprocessing catalysts have included a variety of reactions. It is generally believed that an interaction between the active phase (Mo or W) and the promoter (Co or Ni) takes place. Several models have been suggested to explain the enhanced catalytic activity. The catalytic properties of the unsupported sulfides are dependent on the catalyst preparation methods . In this work we study by electron microscopy two sets of unsupported samples ranging from molybdenum sulfide to cobalt sulfide. The specimens were prepared by the following methods, a slight variation of the classical homogeneous sulfide precipitation (HSP) method, and a new method called impregnated thiosalt decomposition (ITD).


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 630
Author(s):  
Fayaz Hussain ◽  
Saad Alshahrani ◽  
Muhammad Mujtaba Abbas ◽  
Haris Mahmood Khan ◽  
Asif Jamil ◽  
...  

Slaughterhouse waste is considered to be an emerging issue because of its disposal cost. As an alternative, it would be a great prospect for the bioeconomy society to explore new usages of these leftover materials. As per food safety rules mentioned by EU legislation, all bone waste generated by slaughterhouses ought to be disposed of by rendering. The huge quantity of worldwide bone waste generation (130 billion kilograms per annum) is an environmental burden if not properly managed. The waste animal bones can be efficiently employed as a heterogeneous catalyst to produce biodiesel. This mini review summarized the recent literature reported for biodiesel generation using waste animal bones derived heterogeneous catalyst. It discusses the sources of bone waste, catalyst preparation methods, particularly calcination and its effects, and important characteristics of bones derived catalyst. It suggests that catalysts extracted from waste animal bones have suitable catalytic activity in transesterification of different oil sources to generate a good quality biodiesel.


1987 ◽  
Vol 22 (8) ◽  
pp. 3037-3040 ◽  
Author(s):  
Kenji Tabata ◽  
Ikuo Matsumoto ◽  
Shigemi Kohiki

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 115
Author(s):  
Suhail Huzaifa Jaafar ◽  
Mohd Hafiz Mohd Zaid ◽  
Khamirul Amin Matori ◽  
Sidek Hj. Ab Aziz ◽  
Halimah Mohamed Kamari ◽  
...  

This research paper proposes the usage of a simple thermal treatment method to synthesis the pure and Eu3+ doped ZnO/Zn2SiO4 based composites which undergo calcination process at different temperatures. The effect of calcination temperatures on the structural, morphological, and optical properties of ZnO/Zn2SiO4 based composites have been studied. The XRD analysis shows the existence of two major phases which are ZnO and Zn2SiO4 crystals and supported by the finding in the FT-IR. The FESEM micrograph further confirms the existence of both ZnO and Zn2SiO4 crystal phases, with progress in the calcination temperature around 700–800 °C which affects the existence of the necking-like shape particle. Absorption humps discovered through UV-Vis spectroscopy revealed that at the higher calcination temperature effects for higher absorption intensity while absorption bands can be seen at below 400 nm with dropping of absorption bands at 370–375 nm. Two types of band gap can be seen from the energy band gap analysis which occurs from ZnO crystal and Zn2SiO4 crystal progress. It is also discovered that for Eu3+ doped ZnO/Zn2SiO4 composites, the Zn2SiO4 crystal (5.11–4.71 eV) has a higher band gap compared to the ZnO crystal (3.271–4.07 eV). While, for the photoluminescence study, excited at 400 nm, the emission spectra of Eu3+ doped ZnO/Zn2SiO4 revealed higher emission intensity compared to pure ZnO/Zn2SiO4 with higher calcination temperature exhibit higher emission intensity at 615 nm with 700 °C being the optimum temperature. The emission spectra also show that the calcination temperature contributed to enhancing the emission intensity.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


2016 ◽  
Vol 65 (2) ◽  
pp. 432-439 ◽  
Author(s):  
A. A. Shesterkina ◽  
L. M. Kozlova ◽  
O. A. Kirichenko ◽  
G. I. Kapustin ◽  
I. V. Mishin ◽  
...  

2002 ◽  
Vol 20 (5) ◽  
pp. 467-484
Author(s):  
G.A. El-Shobaky ◽  
A.M. Turky ◽  
A.M. Ghozza

The effects of doping NiO and Co3O4 solids with cobalt and nickel species on their surface and catalytic properties were investigated. The amounts of dopant, in the form of the corresponding nitrate, were varied between 0.5–6.0 mol% cobalt ions and 2.0–6.0 mol% nickel ions. Pure and variously doped solids were subjected to thermal treatment at 300–700°C. The techniques employed were XRD, nitrogen adsorption at −196°C, decomposition of H2O2 at 30–50°C and estimation of the amount of surface excess oxygen on the variously prepared solids as determined by the hydrazine method. The results obtained revealed that the pure and variously doped NiO samples precalcined at 300°C consisted of a finely divided NiO phase having an average particle size of ca. 40 Å. Pure and variously doped Co3O4 specimens preheated at 500°C and 700°C were composed of a Co3O4 phase with a much bigger particle size (230 Å and 350 Å, respectively, for the solids precalcined at 500°C and 700°C). Doping of NiO followed by thermal treatment at 300°C and 500°C resulted in a measurable decrease in its BET surface area (19–23%), while doping of Co3O4 with nickel species followed by heating at 500°C and 700°C brought about a significant increase in its specific surface area (56–60%). Doping each of the NiO and Co3O4 solids with cobalt and nickel species greatly increased the amount of surface excess oxygen and effected a considerable increase in their catalytic activities. This increase was, however, much more pronounced in the case of NiO which attained a value of ca. 100-fold. Doping of NiO with cobalt species followed by thermal treatment at 300°C and 500°C decreased the activation energy (DE) of the catalyzed reaction to an extent proportional to the amount of dopant added. On the other hand, doping of Co3O4 with nickel species followed by thermal treatment at 500°C and 700°C did not change the value of DE. These results suggest that doping of Co3O4 with nickel species did not modify the mechanism of the catalyzed reaction but increased the concentration of catalytically active sites without changing their energetic nature.


Sign in / Sign up

Export Citation Format

Share Document