scholarly journals Analysis of Magnetic Forces in the Working Clearance with Magnetic-Abrasive Treatment of Inductors on Standing Magnets

2022 ◽  
Author(s):  
A.M. Ikonnikov

Abstract. The authors describe the method of calculating the magnetic forces in the working gap in the case of magnetically abrasive machining of flat surfaces of billets from magnetic materials by the periphery of a circular inductor on permanent magnets. The application of the software package ANSIS Maxwell for the calculation of the magnetic induction method in the working gap and the magnetic forces of the magnetically abrasive powder acting on the grain is shown. As a result of the work, the magnetic induction in the working gap was calculated for magnetically abrasive machining of flat surfaces of billets from magnetic materials by an inducer on permanent magnets. Also, calculations showed the distribution of the magnetic abrasive powder in the working gap, depending on the material of the workpiece being processed. In the case of magnetically abrasive machining of a magnetic workpiece, the powder in the working gap is concentrated in the zones with the greatest density of force lines - under the inductor poles. An analysis is made of the distribution of magnetic forces in the working gap during magnetic abrasive machining.

2021 ◽  
Vol 5 (1) ◽  
pp. 97-102
Author(s):  
Victor Maiboroda ◽  
Dmytro Dzhulii ◽  
Andrii Zelinko ◽  
Aleksey Burikov

Investigations of the magneto-abrasive machining (MAM) process of ferromagnetic flat surfaces by three types of end heads were carried out. The nature of the change in the magnitude of the magnetic induction in the working zones was determined. The influence of technological parameters of the machining process was investigated, such as the feed rate of the working heads, the frequency of their rotation about their axis, the size of the working gaps on the change in the parameters of the microroughness of the machined surfaces - Sa, Sp, Sv, the frequency distribution of heights microroughness and size of the supporting surface of the profile. It was shown that the level of roughness achieved after MAM is practically the same and does not exceed, under rational conditions of the MAM process, the values Sa = 0.05-0.07 μm, Sp = 0.2 μm and Sv = 0.39 μm with the only difference that the MAM process by the heads of the "brush-half of torus" type are being realized with increased productivity, especially in terms of reducing waviness and individual elements of the heredity of machining, determined by such factors as depth and feed rate during milling. The kinetics of the formation of a microprofile of surfaces is shown under various technological conditions of the MAM process.


2020 ◽  
Vol 7 (1) ◽  
pp. A1-A7
Author(s):  
V. S. Maiboroda ◽  
O. O. Belajev ◽  
D. Yu. Dzhulii ◽  
I. V. Slobodianiuk

The results of the study of using the end-type heads based on permanent magnets for polishing flat surfaces of ferromagnetic parts on standard metal-working equipment are presented in the work. The possibility of a highly efficient achievement of the roughness of flat surfaces up to Ra < 0.05 μm with the initial Ra > 1–2 μm with removing of the heredity of the machining in the form of microwaves obtained in the face milling operation was shown. Based on the results of the analysis of the process of dispergation of the material was analyzed the influence of the magnetic field gradient the intensity of the magneto-abrasive machining of flat ferromagnetic surfaces by heads, which form a magneto-abrasive tool in the shape of a “brush” and “half of torus”. The influence of technological process parameters: the rotation speed of the working heads, the sizes of the working gap, the technological feed on the character of the change in the microgeometry of the machined surface were investigated. The machining conditions, under which occur the preferential machining of micro peaks or micro valleys on a rough surface, were identified. It was determined that the rational conditions of the magneto-abrasive machining of flat ferromagnetic surfaces are: the rotation speed of the working heads 900 rpm, the gap size between the machined surface and the working surface of the head 2.5–4.0 mm and the working feed 10–15 mm/min. Keywords: finishing, roughness, polishing, permanent magnet, magneto-abrasive tool.


2021 ◽  
Vol 7 (6) ◽  
pp. 89
Author(s):  
Valerio De Santis

Recent advances in computational electromagnetics (CEMs) have made the full characterization of complex magnetic materials possible, such as superconducting materials, composite or nanomaterials, rare-earth free permanent magnets, etc [...]


1983 ◽  
Vol 105 (2) ◽  
pp. 156-161 ◽  
Author(s):  
T. E. Osterkamp ◽  
K. Kawasaki ◽  
J. P. Gosink

Variations in the electrical conductivity of a soil and water system with temperature and salt concentration suggest that a soil containing hot and/or saline groundwater may be expected to have a higher conductivity compared to a cooler and/or less saline system. Temperature and conductivity surveys were carried out at Pilgrim Springs, on the Seward Peninsula, and at Chena Hot Springs, near Fairbanks, to test the use of a magnetic induction method (which measures electrical conductivity) for delineating near-surface hot groundwater sources in geothermal areas surrounded by permafrost. Comparison of the temperature data and conductivity data from these surveys demonstrates that the conductivity anomalies, as measured by the magnetic induction method, can be used to define the precise location of hot groundwater sources in these geothermal areas with the higher temperatures correlating with higher values of conductivity. Magnetic induction measurements of conductivity can also be used to define the lateral extent of the thawed geothermal areas (used for calculating the stored energy) in permafrost terrain. The utility of these magnetic induction measurements of conductivity for reconnaissance geophysical surveys of geothermal areas is that a much greater density of data can be obtained in a shorter time in comparison with shallow temperature measurements. In addition, it is simpler, cheaper and easier (physically) to obtain the data. While conductivity anomalies can result from other than hot and/or saline groundwater, these conductivity data, when coupled with a few measured temperature profiles and groundwater samples, should result in reliable reconnaissance level geophysical surveys in Alaskan geothermal areas.


2019 ◽  
Vol 15 (1) ◽  
pp. 21-27
Author(s):  
E. A. Volegova ◽  
T. I. Maslova ◽  
V. O. Vas’kovskiy ◽  
A. S. Volegov

Introduction The introduction indicates the need for the use of permanent magnets in various technology fields. The necessity of measuring the limit magnetic hysteresis loop for the correct calculation of magnetic system parameters is considered. The main sources of error when measuring boundary hysteresis loops are given. The practical impossibility of verifying blocks of magnetic measuring systems element-by-element is noted. This paper is devoted to the development of reference materials (RMs) for the magnetic properties of hard magnetic materials based on Nd2Fe14B, a highly anisotropic intermetallic compound.Materials and measuring methods Nd-Fe-B permanent magnets were selected as the material for developing the RMs. RM certified values were established using a CYCLE‑3 apparatus included in the GET 198‑2017 State Primary Measurement Standard for units of magnetic loss power, magnetic induction of constant magnetic field in a range from 0.1 to 2.5 T and magnetic flux in a range from 1·10–5 to 3·10–2 Wb.Results and its discussion Based on the experimentally obtained boundary hysteresis loops, the magnetic characteristics were evaluated, the interval of permitted certified values was set, the measurement result uncertainty of certified values was estimated, the RM validity period was established and the first RM batch was released.Conclusion On the basis of conducted studies, the RM type for magnetic properties of NdFeB alloy-based hard magnetic materials was approved (MS NdFeB set). The developed RM set was registered under the numbers GSO 11059–2018 / GSO 11062–2018 in the State RM Register of the Russian Federation.


2021 ◽  
Vol 105 ◽  
pp. 184-193
Author(s):  
Ilya Aleksandrovich Frolov ◽  
Andrei Aleksandrovich Vorotnikov ◽  
Semyon Viktorovich Bushuev ◽  
Elena Alekseevna Melnichenko ◽  
Yuri Viktorovich Poduraev

Magnetorheological braking devices function due to the organization of domain structures between liquid and solid magnetic materials under the action of an electromagnetic or magnetic field. The disc is most widely used as a rotating braking element that made of a solid magnetic material due to the large area of contact with a magnetorheological fluid. Many factors affect the braking characteristics of the magnetorheological disc brake. Specifically, the value of the magnetic field and how the field is distributed across the work element is significantly affected at the braking torque. There are different ways to generate a magnetic field. In this study, the method of installation of permanent magnets into the construction, allowing to increase the braking torque of the magnetorheological disc brake is proposed. Simulation modelling showing the distribution of the magnetic field across the disk depending on the installation of permanent magnets with different pole orientations were carried out. The model takes into account the possibility of increasing the gap between solid magnetic materials of the structure, inside them which the magnetorheological fluid is placed. Comparative estimation of the distribution of the magnetic fields depending on the chosen method of installation of permanent magnets with different orientations of their poles is carried out. Further research is planned to focus on a comparative assessment of the distribution of magnetic fields depending on the selected material of the braking chamber.


2012 ◽  
Vol 452-453 ◽  
pp. 344-347
Author(s):  
Tian Neng Xu ◽  
Jie Mao ◽  
Hua Chen Pan

In dual-coolant and self-cooled blanket concepts, the magnetohydrodynamic (MHD) pressure drop is a key point that should be considered. In order to reduce the high MHD drop, it requires an understanding of the liquid metal flow in rectangular duct with FCI. In this paper, two cases that have different pressure equalization slot widths were simulated based on MHD module of FLUENT. It is found that with different widths of pressure equalization slot, velocity distribution and pressure drop changes a lot.


2012 ◽  
Vol 721 ◽  
pp. 237-242 ◽  
Author(s):  
Masaru Oka ◽  
Takashi Todaka ◽  
Masato Enokizono ◽  
Kousuke Nagaya ◽  
Tomoyuki Fujita

Magnetic gears are a force transmitter consisting of permanent magnets. The mechanical input can be transmitted to an output shaft without contact by magnetic forces. The magnetic gears are not worn out because there is no friction. As a result, the running costs such as the maintenance fee can be suppressed and the resources can be saved. However, the transmission torques of the conventional magnetic gears, which have so far been developed, are very low. Besides, new structure models designed for high torque density need a lot of permanent magnets and multi-pole constructions. Those structures are complex and the manufacturing is difficult. In this research, we applied a flux concentration type surface permanent magnet arrangement to a surface permanent magnet type magnetic gear in order to improve the transmission torque and to reduce the amount of permanent magnets. The magnetic flux distribution, the gap flux density and the transmission torque of the developed new models are numerically analyzed by using the two-dimensional finite element method. In this paper, a permanent magnet structure optimized to reduce its amount and influence of the flux concentration type surface permanent magnet arrangement on the gap flux density distribution and transmission torque are reported.


Sign in / Sign up

Export Citation Format

Share Document