scholarly journals Assessment of Lichens as Biomonitors of Heavy Metal Pollution in Selected Mining Area, Slovakia

2021 ◽  
Vol 22 (1) ◽  
pp. 53-59
Author(s):  
Amer H. Tarawneh

Lichens have widely been used as bioindicators to reflect the quality of the environment. The present study was conducted to investigate the lichens diversity that grows on the surface of waste heaps from an abandoned old copper mine in Mlynky, Slovakia. In spite of the heavy metalcontaminated environment, we documented twenty species of lichens in the selected site. Taxonomically the most numerous group were represented by Cladonia with seven species, as well other species; namely, Acarospora fuscata, Cetraria islandica, Dermatocarpon miniatum, Hypogymnia physodes, Hypogymnia tubulosa, Lecanora subaurea, Lepraria incana, Physcia aipolia, Porpidia macrocarpa, Pseudevernia furfuracea, Rhizocarpon geographicum and Xanthoria parietina. The content of selected heavy metals (Cu, Fe, and Zn) in the predominant lichens Cetraria islandica, Cladonia digitata, Cladonia pyxidata, Hypogymnia physodes and Pseudevernia furfuracea were analyzed. The highest content of Cu, Fe, and Zn was found in Cladonia pyxidata collected from mine-spoil heaps with concentration 46 ± 4.4, 82.5 ± 22.6, 4.8 ± 1.6 mg/kg, respectively. Interestingly, Cladonia pyxidata collected from the forest surrounding the location showed 15 times lower concentration for Cu. Additionally, similar results were found for Fe and Zn.

1999 ◽  
Vol 39 (8) ◽  
pp. 9-12
Author(s):  
G. A. Mirinchev ◽  
Tz. V. Tzankov ◽  
I. S. Kostova ◽  
M. G. Mirincheva

In the Bulgarian part of the Black Sea coast there are seventeen rivers and three lakes which contribute to the pollution and eutrophication of the Black Sea. The hydrophysical and hydrological characteristics of these rivers are described. The variation in the concentration of heavy metals during recent years (data up to 1996) has been determined. The total annual quantity of some pollutants and their percentage distribution are presented. Conclusions are made based on the variation of water quality of the rivers and their impact on the heavy metal pollution of the Black Sea.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9183
Author(s):  
Kejing Yin ◽  
Zhaoyong Shi ◽  
Mengge Zhang ◽  
Yajuan Li

Background There is a critical need to examine whether mining of molybdenum (Mo) ore will affect Mo absorption and translocation by plants at a community level. Methods Indigenous plants and their rhizospheric soil (0–20 cm) growing in two different areas including the mining and the unexploited areas were collected from the Luanchuan Mo mine—one of the largest Mo mines in Asia. The concentrations of Mo and other heavy metals of plants or soil were measured by ICP-AES. Mo absorption and translocation in plants growing in two areas were investigated and compared. Heavy metal pollution in soil was also evaluated by the potential ecological hazard index method. Results Mo concentration in mining soils was higher with the changes from 108.13 to 268.13 mg kg−1 compared to unexploited area. Mo concentrations in shoots and roots of plants growing in the mining area were also significant higher than those growing in the unexploited area with 2.59 and 2.99 times, respectively. The Mo translocation factor of plants growing in the unexploited area was 1.61, which reached 1.69 times that of plants growing in the mining area. Mo was the main heavy metal pollutant in the soil of both the mining and the unexploited areas. Conclusion Mining of Mo had changed not only the Mo concentration in soil but also Mo absorption and translocation in plants. Plants growing in the mining area absorbed more Mo from the soil but translocated relatively less to shoots than plants of the unexploited area. However, the mechanisms of Mo absorption and translocation of plants in mining area should be further studied in the future.


2021 ◽  
Author(s):  
Xun Wang

Abstract In this study, taking a coal mining area as an example, three vegetation restoration modes were designed: Populus L., Ligustrum lucidum Ait., and Amygdalus persica L., and soil and plant samples were collected to determine and evaluate the heavy metals. It was found that all the three modes were effective in eliminating heavy metal pollution in the soil, especially Populus L. and Ligustrum lucidum Ait.; in the soil layer at a depth of 0–20 cm, the content of Cd was the lowest (2.68 mg/kg) in Populus L., and the content of Cr and Pb was the lowest (58.64 mg/kg and 95.36 mg/kg) in Ligustrum lucidum Ait., which was significantly lower than that in the bare land. The evaluation results demonstrated that the pollution under Populus L. and Ligustrum lucidum Ait. modes was moderate. In the aspect of the heavy metal content in plants, the content of Cd was the lowest, and the content of Cr and Pb was high. In the same plant, the content of heavy metals in the leaf was the lowest, followed by the stem and root. The experimental results show that the vegetation restoration mode can relieve the heavy metal pollution, which makes some contributions to solve the ecological restoration problem in coal mining areas.


2020 ◽  

<p>Solid wastes and acid wastewater lead to the enrichment of heavy metals in the soil of mining area. Heavy metal pollution causes the decline of soil quality, ecosystem degradation, crop yield reduction, and even threatens human health. For this reason, the real-time detection method for heavy metal pollution in mining area is studied. Taking a mining area as an example, the data of heavy metal content in mining area soil are collected by PLSR model. Based on the collected data, the real-time detection model of heavy metal pollution in mining area soil based on improved analytic hierarchy process and weighted average method is adopted to real-time detect the heavy metal pollution index in the soil of mining area. The results show that the pollution index of Cu, Zn and Pb in the soil of this mining area belongs to heavy pollution, and the pollution of Cd is relatively small. Among them, the pollution index of Pb is the largest among the four heavy metals, and the pollution is quite serious. The pollution sources of Pb, Zn and Cu in this mining area are the same, and the pollution sources of Cd are different from those of other three heavy metals.</p>


2017 ◽  
Vol 63 (No. 8) ◽  
pp. 355-361 ◽  
Author(s):  
Demková Lenka ◽  
Baranová Beáta ◽  
Oboňa Jozef ◽  
Árvay Július ◽  
Lošák Tomáš

Three moss (Pleurosium spp., Polytrichum spp., Rhytidiadelphus spp.) and two lichen taxa (Hypogymnia physodes L., Pseudevernia furfuracea L.), were exposed for four weeks in six petrol stations, two consecutive years (2015–2016), in urban area of the Prešov city (Slovakia), to assess accumulation of selected airborne elements Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn. Significantly highest (P &lt; 0.01) ability to accumulate Zn, Ni, Co and Fe was found in Pleurosium spp.; Pseudevernia furfuracea was determined the best accumulator of Hg, whereas Rhytidiadelphus spp. was found as the least suitable for this purpose. No significant differences in heavy metal accumulation between moss and lichen taxonomic group were found. Samples of conifer (used as a moss/lichen bag holder) showed significantly lower content of heavy metals compared to mosses and lichens. Major content of heavy metals trapped in the air around petrol stations, did not originate from the petrol combustion, but predominantly from the car body, which is mechanically disrupted during fuelling.


2021 ◽  
Author(s):  
Minjie Chen ◽  
Xiaoru Jiang ◽  
Zhansheng Mi ◽  
Yafei Li ◽  
Zhe Wang ◽  
...  

Abstract Background Environmental pollution from rare earth mining areas is of great concern, but the impact on microbial ecology and genomics has received little attention. In this study, the relationship between heavy metals and soil microbial community in the northern rare earth mining area was explored. Methods In order to study the detoxification mechanisms of heavy metals by microorganisms in this typical rare earth mining area, the study area was divided into three parts (mining area, residential area and control area). Analysis of microbial community diversity, structure and functional abundance using high-throughput sequencing techniques. Analysis of the effect of heavy metal pollution on the abundance of heavy metal resistance genes in soils of different regions using real-time fluorescence quantitative PCR. Results The results showed that the heavy metal pollution rules: mining area > residential area > control area. Under the condition of long-term heavy metal pollution, the original microbial community composition was changed, and the species richness and evenness of soil in mining areas were higher than that in residential areas. The high-throughput sequencing analysis showed that existed metal-resistant microbial communities such as Actinobacteria, Proteobacteria, Korarchaeota and so on under the stress of heavy metal. High concentrations of heavy metals can inhibit the activities of catalase and sucrase. According to Tax4Fun function prediction analysis, heavy metal accumulation increased the ABC transporter protein in microbial function. The results of fluorescence quantification experiments also demonstrated that the abundance of heavy metal resistance genes, czcA, czcB, czcC and czcD, encoding ABC transporter proteins, increased with increasing heavy metal concentrations. Conclusions In conclusion, the accumulation of heavy metals not only changed the soil physicochemical properties and the microbial community structure, but also decreased soil enzyme activities and increased the abundance of resistance genes, which activated the detoxification mechanism of heavy metals. which provided a reference for future ecological remediation.


Author(s):  
Defri Yona ◽  
Syarifah Hikmah Julinda Sari ◽  
Anedathama Kretarta ◽  
Citra Ravena Putri Effendy ◽  
Misba Nur Aini ◽  
...  

This study attempted to analyze the distribution and contamination status of heavy metals (Cu, Fe and Zn) along western coast of Bali Strait in Banyuwangi, East Java. Bali Strait is one of the many straits in Indonesia with high fisheries activities that could potentially contributed to high heavy metal pollution. There were five sampling areas from the north to south: Pantai Watu Dodol, Pantai Kalipuro, Ketapang Port, Pantai Boom and Muncar as the fish landing area. Heavy metal pollution in these locations comes from many different activities such as tourism, fish capture and fish industry and also domestic activities. Contamination factor (CF), geo-accumulation index (Igeo) and enrichment factor (EF) of each heavy metal were calculated to obtain contamination status of the research area. The concentrations of Fe were observed the highest (1.5-129.9 mg/kg) followed by Zn (13.2-23.5 mg/kg) and Cu (2.2-7.8 mg/kg). The distribution of Cu, Fe and Zn showed variability among the sampling locations in which high concentrations of Cu and Zn were higher in Ketapang Port, whereas high concentration of Fe was high in almost all sampling locations. According to the pollution index, contamination factors of Cu, Fe and Zn were low (CF < 1 and Igeo < 1). However, high index of EF (> 50) showed high influence of the anthropogenic activities to the contribution of the metals to the environment. This could also because of the high background value used in the calculation of the index due to the difficulties in finding background value from the sampling areas.Keywords: heavy metals, pollution index, contamination factor, geo-accumulation index, Bali Strait


Author(s):  
Yiwei Zhao ◽  
Liangmin Gao ◽  
Fugeng Zha ◽  
Xiaoqing Chen ◽  
Xiaofang Zhou ◽  
...  

AbstractDue to the special sensitivity of typical ecologically fragile areas, a series of human life, mining, and other activities have a greater impact on the environment. In this study, three coal mines in Ordos City on the Loess Plateau were selected as the study area, and the pollution levels of heavy metals in the area were studied by measuring As, Hg, Cr, Cd, Cu, Ni, and Pb in the soil of 131 sampling points. Combined with the concept of “co-occurrence network” in biology, the level of heavy metals in soil was studied using geostatistics and remote sensing databases. The results showed that the concentrations of Hg, Cr, Ni, Cu, and Pb in more than half of the sampling points were higher than the local environmental background value, but did not exceed the risk control value specified by China, indicating that human factors have a greater influence, while Cd and As elements are mainly affected Soil parent material and human factors influence. Heavy metal elements have nothing to do with clay and silt but have an obvious correlation with gravel. Cd, Pb, As and Ni, Cd, Cr are all positively correlated, and different heavy metals are in space The distribution also reflects the autocorrelation, mainly concentrated in the northeast of the TS mining area and the middle of the PS mining area.


Sign in / Sign up

Export Citation Format

Share Document