Heat-induced Gelation and Stabilization of Pea and Faba Bean Protein Concentrate-stabilized Oil-in-water Emulsions

2021 ◽  
Author(s):  
Fatemeh Keivaninahr ◽  
Supratim Ghosh
Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 29
Author(s):  
Malik Adil Nawaz ◽  
Tanoj Kumar Singh ◽  
Hema Jegasothy ◽  
Roman Buckow

Faba beans are one of the most consumed legumes and an emerging source of edible legume-based protein. Efficacy of faba bean protein concentrate (available protein ~ 63%) during ultra-heat treatment (UHT) processing of homogenised oil-in-water (O/W) emulsion was assessed in the present study by using four different concentrations viz., FPC5 ~ 5%, FPC6 ~ 6%, FPC7 ~ 7%, and FPC8 ~ 8%. Additionally, the physicochemical properties of emulsion at various processing stages viz., coarse, homogenised, and UHT were also measured. Overall, this study showed the potential use of faba bean protein as a replica of soy protein in UHT processed legume-based beverages.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1244
Author(s):  
Malik Adil Nawaz ◽  
Tanoj Kumar Singh ◽  
Regine Stockmann ◽  
Hema Jegasothy ◽  
Roman Buckow

The objective of this research was to develop a model faba bean drink with a high concentration of protein (>4% w/w). The protein molecular weights and frequency for both faba and soy were assessed using SDS-PAGE. Results showed similarities in the protein molecular weight of both faba and soy (mainly 11S globulin ~Glycinin and 7S globulin ~β-conglycinin). Thus, faba can be considered as a potential soy replica in plant-based milk beverages. Oil-in-water emulsions (5–8% w/w available protein) were prepared using faba bean protein concentrate (FPC), 1% sunflower oil, and 0.2% sunflower lecithin. These emulsions were used as model beverages and were further investigated for UHT processibility, stability, and physicochemical properties. The physicochemical properties of emulsions at various processing stages viz., coarse emulsification, homogenisation, and UHT, were measured. An increase in the protein concentration and thermal treatment resulted in an increased oil droplet size, coalescence and flocculation, and protein aggregation. Lower protein concentrations viz., 5–6%, showed greater negative ζ-potential, and thereby, high dispersibility through enhanced electrostatic repulsions than those of higher concentrations (7–8%). Furthermore, an increase in protein concentration and UHT treatment resulted in an increased creaming index. In total, 21 different volatile compounds were detected and quantified, representing different chemical classes, namely alcohols, aldehydes, ketones, esters, furan, and acids. These volatiles have major consequences for the overall flavour chemistry of the model beverage product. Overall, this study showed the potential for application of faba bean as a protein source in UHT-treated legume-based beverages and identified areas for further development.


1983 ◽  
Vol 32 (2) ◽  
pp. 111-115
Author(s):  
Flaminio Fidanza ◽  
Franco Contaldo

Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1077 ◽  
Author(s):  
Jan M. Bühler ◽  
Birgit L. Dekkers ◽  
Marieke E. Bruins ◽  
Atze Jan van der Goot

We investigated the effect of dry-heat treatment on the properties of faba bean protein concentrate using soy protein concentrate as a benchmark. While soy protein—widely used as an ingredient in meat replacers—is recovered through a wet fractionation, protein recovery from starch bearing pulses like faba bean can be done via dry fractionation. This process does not require drying or heating steps and therefore, keeps the original protein functionality intact. This results in differences in properties such as water binding capacity of the protein fraction. Faba bean protein concentrate was dry-heated at temperatures from 75–175 °C, which resulted in higher water-holding capacity and less soluble protein, approaching values of soy protein concentrate. These changes were due to partial denaturation of protein, changing the structure of the protein, and exposing hydrophobic sites. This led to protein aggregation, as observed by light microscopy. Only noncovalent bonds caused the decrease of solubility of dry-heated faba bean protein concentrate. We conclude that dry-heating of dry fractionated faba bean protein can change the functional properties of the protein fraction to desired properties for certain applications. The effect is similar to that on soy, but the underlying mechanisms differ.


1985 ◽  
Vol 53 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Elena Mengheri ◽  
M. Laura Scarino ◽  
Francesco Vignolini ◽  
M. Antonietta Spadoni

1. High-fat-high-cholesterol diets containing casein or a Vicia faba bean (faba bean) protein concentrate as the protein source were given to rats for 5 weeks. When the faba bean protein concentrate or its ethanol extract was present in the diet, a marked decrease was found in the level of circulating cholesterol associated with the lower-density lipoproteins (very-low-, intermediate- and low-density lipoproteins) compared with the level found on the diets containing casein or the faba bean protein concentrate deprived of ethanol-soluble factors.2. Alterations in apoprotein pattern were detected after the different dietary treatments. In particular, apoA-I appeared in an unusual form with electrophoretic mobility faster than normal in all lipoprotein fractions after feeding the diets that did not lower plasma cholesterol. When the diets contained the faba bean protein concentrate or its ethanol extract, the apoA-I disappeared from the lower-density lipoproteins but its normal form and the unusual one were apparent in the high-density lipoproteins.3. A moderate increase in faecal excretion of acidic steroids was found after feeding the diets containing the ethanol-soluble factors, irrespective of the protein source.4. The results are discussed in relation to the presence of saponin and polyunsaturated lecithin in the ethanol extract of the faba bean protein concentrate.


Sign in / Sign up

Export Citation Format

Share Document