1,4-dioxane in Alcohol Ethoxylates: Concentration, Measurement Methods and Mechanism of Formation

2021 ◽  
Author(s):  
Jerrick Juliette ◽  
Nathan Fleer ◽  
Julian Barnes
Author(s):  
Jian Sun ◽  
Lin Fu ◽  
Shigang Zhang ◽  
Wei Hou

Absorption chillers have currently become an important device in saving energy because of its effectiveness in utilizing low grade heat. Lithium bromide is widely used as absorbent in this system. But there were few outstanding concentration measurement methods in practice before. In this paper, complete electrical resistivity data of lithium bromide aqueous solution for concentration measurement was given. The electrical resistivity of lithium bromide aqueous solution was measured at concentrations of 35–70 wt% of lithium bromide and temperatures of 10–100°C. Results of this work can meet the requirement of concentration measurement of lithium bromide in absorption chillers without extracting samples.


2013 ◽  
Vol 345 ◽  
pp. 251-254
Author(s):  
Yan Jun Zhao ◽  
Shou Guang Cheng ◽  
Bin Qu

NDIR is one of the NO2 concentration measurement methods. The NO2 concentration can be figured out by measuring the attenuation of the infrared light intensity on the characteristic wavelength. But the infrared light intensity is also attenuated by the monodispersion soot particles because of the particles absorption and scattering. So the monodispersion soot particles can impact the NO2 concentration accuracy. The interference of the monodispersion particles is discussed in the paper. Simulation results show that the impact parameters on the NO2 concentration accuracy include the received scattering angle range, particle size and concentration. The solution method is brought out and NO2 concentration measurement accuracy can be improved.


2014 ◽  
Vol 540 ◽  
pp. 255-258
Author(s):  
Yan Jun Zhao ◽  
Cheng Bin Gao ◽  
Bin Qu

Environment materials play important role in our daily life. It includes so many types. NO2 is one of the most important gaseous pollutants and NO2 concentration measurement system is one part of the CEMS system. There have many NO2 concentration measurement methods and NDIR is used commonly. The received angle of the measurement light is gradually decreases while the distance between soot and the receiver becomes larger; so the true infrared light intensity is smaller than the theoretical infrared light intensity and NO2 concentration is less than the actual concentration. To reduce the soot position influence, soot position influence on NO2 concentration measurement using NDIR is studied. The influence of the different soot position is analyzed. The simulation results show that the different soot position can influent the NO2 concentration accuracy. The solution method on decreasing the soot poison influence is brought out and can improve the NO2 concentration accuracy.


2013 ◽  
Vol 345 ◽  
pp. 255-258
Author(s):  
Yan Jun Zhao ◽  
Shou Guang Cheng ◽  
Bin Qu

NDIR is one of the important NO2 concentration measurement methods. The NO2 concentration can be figured out through measuring the light intensity attenuation. But the scattering and absorption of the multidispersion soot particles can attenuate the light intensity, so the infrared measurement light intensity attenuation is larger and the concentration is increased. The interference on the NO2 concentration caused by the multidispersion soot particles is discussed in the paper. The dissipativity, concentration, average size, size distribution parameters and the scattering light angle range of the multidispersion soot particles can interference the NO2 concentration. The method to reduce the interference is brought out and the NO2 concentration measurement accuracy is improved.


2014 ◽  
Vol 451 ◽  
pp. 18-24 ◽  
Author(s):  
Xiaofei Li ◽  
Yuhua Wu ◽  
Li Zhang ◽  
Yinglong Cao ◽  
Yunjing Li ◽  
...  

2014 ◽  
Vol 886 ◽  
pp. 228-231
Author(s):  
Yan Jun Zhao ◽  
Cheng Bin Gao

NDIR method is one of the important nitrogen dioxide concentration measurement methods. The original and the transmission light intensity on the nitrogen dioxide attached on the protection windows is attenuated because of the soot scattering and absorption and the received light intensity on the nitrogen dioxide Characteristic absorption wavelength is deviated from the theoretical absorption light intensity, so the nitrogen dioxide concentration measurement accuracy is decreased. The protection windows pollution interference caused by the monodispersion soot is discussed in this paper. The numerical simulation based on the Mie theory results show that the nitrogen dioxide concentration measurement accuracy is related to the soot concentration, soot diameter and so on. The solution method of the windows pollution interference is brought out and the nitrogen dioxide concentration measurement accuracy can be improved.


2018 ◽  
Vol 11 (4) ◽  
pp. 249-266 ◽  
Author(s):  
Judith Znanewitz ◽  
Lisa Braun ◽  
David Hensel ◽  
Claudia Fantapié Altobelli ◽  
Fabian Hattke

1993 ◽  
Vol 13 (02) ◽  
pp. 96-105 ◽  
Author(s):  
H. Beeser ◽  
U. Becker ◽  
H. J. Kolde ◽  
E. Spanuth ◽  
P. Witt ◽  
...  

SummaryThe prothrombin time (PT), obtained from a fresh normal plasma pool (FPP), is the basis both for the establishment of the 100% activity (normal plasma) and for the ratio calculation used in the International Normalized Ratio (INR) according to the recommendations of the ICSH/ICTH (6). Today the PT of lyophilized normal plasma pools are successfully used as reference for the assessment of samples in proficiency studies. However, a lack of comparability is to be recognized. Therefore the Committee of Hematology of the German Association of Diagnostics’ and Diagnostic Instruments’ Manufacturers (VDGH) decided to produce a candidate reference plasma (VDGH Reference Plasma) which was calibrated against fresh normal plasma pools in an international study.The basic calibration was performed by using the same certified BCR thromboplastin (BCT/099) by all participants. The endpoint was determined manually and by using the coagulometer Schnitger-Gross. In additional testings each participant used his own routine thromboplastins and methods. Calculating the ratio [PT VDGH Reference Plasma (sec)/PT fresh normal plasma pool (sec)] the VDGH Reference Plasma showed a deviation from the average fresh normal plasma pool of 1.05 both with the BCT/099 and with all thromboplastins. There were obtained some statistical differences between “plain” and “combined’’ (added factor V and fibrinogen) thromboplastins. No statistical difference was found between the different endpoint measurement methods (manual, mechanical, optical).In spite of these statistical deviations the VDGH Reference Plasma can be used for the standardization of the PT-normal (100%) value with different ratios for plain (1.06) and combined (1.02) thromboplastins. The manufacturers will use this VDGH Reference Plasma for the calibration of their commercially available calibration plasmas, which allows the user of such a material to calculate a calibrated 100% PT value.


Author(s):  
A. A. Safronov ◽  
V. S. Dub ◽  
V. V. Orlov ◽  
K. L. Kosyrev ◽  
A. S. Loskutov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document