scholarly journals New Treatment Strategies to Eradicate Cancer Stem Cells and Niches in Glioblastoma

2013 ◽  
Vol 53 (11) ◽  
pp. 764-772 ◽  
Author(s):  
Takuichiro HIDE ◽  
Keishi MAKINO ◽  
Hideo NAKAMURA ◽  
Shigetoshi YANO ◽  
Shigeo ANAI ◽  
...  
Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 267
Author(s):  
Lourdes Cortes-Dericks ◽  
Domenico Galetta

Causing a high mortality rate worldwide, lung cancer remains an incurable malignancy resistant to conventional therapy. Despite the discovery of specific molecular targets and new treatment strategies, there remains a pressing need to develop more efficient therapy to further improve the management of this disease. Cancer stem cells (CSCs) are considered the root of sustained tumor growth. This consensus corroborates the CSC model asserting that a distinct subpopulation of malignant cells within a tumor drives and maintains tumor progression with high heterogeneity. Besides being highly tumorigenic, CSCs are highly refractory to standard drugs; therefore, cancer treatment should be focused on eliminating these cells. Herein, we present the current knowledge of the existence of CSCs, CSC-associated mechanisms of chemoresistance, the ability of CSCs to evade immune surveillance, and potential CSC inhibitors in lung cancer, to provide a wider insight to drive a more efficient elimination of this pro-oncogenic and treatment-resistant cell fraction.


Biomedicines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 77 ◽  
Author(s):  
Judy Crabtree ◽  
Lucio Miele

Breast cancer stem cells (BCSC) have been implicated in tumor initiation, progression, metastasis, recurrence, and resistance to therapy. The origins of BCSCs remain controversial due to tumor heterogeneity and the presence of such small side populations for study, but nonetheless, cell surface markers and their correlation with BCSC functionality continue to be identified. BCSCs are driven by persistent activation of developmental pathways, such as Notch, Wnt, Hippo, and Hedgehog and new treatment strategies that are aimed at these pathways are in preclinical and clinical development.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


2019 ◽  
Vol 2 (3) ◽  
pp. 152-165 ◽  
Author(s):  
Demeng Chen ◽  
Cun-Yu Wang

AbstractHead and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor and the sixth most common cancer worldwide. Current treatment strategies for HNSCC are surgery, radiotherapy, chemotherapy, immunotherapy or combinatorial therapies. However, the overall 5-year survival rate of HNSCC patients remains at about 50%. Cancer stem cells (CSCs), a small population among tumor cells, are able to self-renew and differentiate into different tumor cell types in a hierarchical manner, similar to normal tissue. In HNSCC, CSCs are proposed to be responsible for tumor initiation, progression, metastasis, drug resistance, and recurrence. In this review, we discuss the molecular and cellular characteristics of CSCs in HNSCC. We summarize current approaches used in the literature for identification of HNSCC CSCs, and mechanisms required for CSC regulation. We also highlight the role of CSCs in treatment failure and therapeutic targeting options for eliminating CSCs in HNSCC.


Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2487-2514 ◽  
Author(s):  
Asmaa Reda ◽  
Salma Hosseiny ◽  
Ibrahim M El-Sherbiny

Cancer is depicted as the most aggressive malignancy and is one the major causes of death worldwide. It originates from immortal tumor-initiating cells called ‘cancer stem cells’ (CSCs). This devastating subpopulation exhibit potent self-renewal, proliferation and differentiation characteristics. Dynamic DNA repair mechanisms can sustain the immortality phenotype of cancer to evade all treatment strategies. To date, current conventional chemo- and radio-therapeutic strategies adopted against cancer fail in tackling CSCs. However, new advances in nanotechnology have paved the way for creating next-generation nanotheranostics as multifunctional smart ‘all-in-one’ nanoparticles. These particles integrate diagnostic, therapeutic and targeting agents into one single biocompatible and biodegradable carrier, opening up new avenues for breakthroughs in early detection, diagnosis and treatment of cancer through efficient targeting of CSCs.


Medicines ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 67 ◽  
Author(s):  
◽  
◽  

Esophageal cancer (EC) is the eighth most common cancer and is the sixth leading cause of death worldwide. The incidence of histologic subtypes of EC, esophageal adenocarcinoma (EAC) and esophageal squamous carcinoma (ESCC), display considerable geographic variation. EAC arises from metaplastic Barrett’s esophagus (BE) in the context of chronic inflammation secondary to exposure to acid and bile. The main risk factors for developing ESCC are cigarette smoking and alcohol consumption. The main somatic genetic abnormalities showed a different genetic landscape in EAC compared to ESCC. EAC is a heterogeneous cancer dominated by copy number alterations, a high mutational burden, co-amplification of receptor tyrosine kinase, frequent TP53 mutations. The cellular origins of BE and EAC are still not understood: animal models supported a cellular origin either from stem cells located in the basal layer of esophageal epithelium or from progenitors present in the cardia region. Many studies support the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. The exact identification of these CSCs, as well as their role in the pathogenesis of EAC and ESCC remain still to be demonstrated. The reviewed studies suggest that current molecular and cellular characterization of EAC and ESCC should serve as background for development of new treatment strategies.


2015 ◽  
Author(s):  
Benjamin Werner ◽  
Jacob G Scott ◽  
Andrea Sottoriva ◽  
Alexander RA Anderson ◽  
Arne Traulsen ◽  
...  

Cancers arise as a result of genetic and epigenetic alterations. These accumulate in cells during the processes of tissue development, homeostasis and repair. Many tumor types are hierarchically organized and driven by a sub-population of cells often called cancer stem cells. Cancer stem cells are uniquely capable of recapitulating the tumor and can be highly resistant to radio- and chemotherapy treatment. We investigate tumor growth patterns from a theoretical standpoint and show how significant changes in pre- and post-therapy tumor dynamics are tied to the dynamics of cancer stem cells. We identify two characteristic growth regimes of a tumor population that can be leveraged to estimate cancer stem cell fractions in vivo using simple linear regression. Our method is a mathematically exact result, parameter free and does not require any microscopic knowledge of the tumor properties. A more accurate quantification of the direct link between the sub-population driving tumor growth and treatment response promises new ways to individualize treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document