Biospectroscopic Study on Multi - Component Reactions (MCRs) in Two A - Type and B - Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles - Nucleic Acids Complexes as Anti-Cancer Drugs

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
A Heidari
2018 ◽  
Vol 41 (3-4) ◽  
pp. 121-128 ◽  
Author(s):  
Leila Hoseini ◽  
Azar Bagheri

Abstract The study of the interaction of drugs with DNA is very exciting and significant not only for understanding the mechanism of the interaction but also for the design of new drugs. Here, we report the results of Fourier transform infrared (FT-IR) and ultraviolet (UV)-visible spectroscopy studies to determine the external binding modes of sulfathiazole (STZ), and the binding constant and stability of the STZ-DNA complex in aqueous solution. The results of absorption spectra showed that the interaction of STZ-DNA is weak because there is only a hyperchromic effect. A hyperchromic effect reflects the corresponding changes of DNA in its conformation and structure after the drug-DNA interaction has occurred. Spectroscopic evidence revealed that STZ binds DNA with an overall binding constant of K (STZ-DNA)=0.42×103 m−1. FT-IR spectroscopy showed that the complexation of STZ with DNA occurred via A-T and PO2 groups. Nano cadmium hydroxide has been synthesized using hexamine as the template at room temperature. Then, this nano cadmium hydroxide recrystallizes into nano cadmium oxide (CdO) at 400°C for 2 h. The product was characterized by using X-ray diffraction and scanning electron microscopy. The presence of drugs in aquatic media has emerged in the last decade as a new environmental risk. The other aim of this study was to investigate the degradation of the STZ antibiotic by nanosized CdO under ultraviolet irradiation. Various experimental parameters, such as initial CdO concentration, initial pH, and reaction times, were investigated. According to the results, this method has a good performance in the removal of STZ.


1993 ◽  
Vol 55 (1) ◽  
pp. 43-46
Author(s):  
Jun YOSHIDA ◽  
Juichiro NAKAYAMA ◽  
Nobuyuki SHIMIZU ◽  
Shonosuke NAGAE ◽  
Yoshiaki HORI

2020 ◽  
Author(s):  
Samuel C. Gill ◽  
David Mobley

<div>Sampling multiple binding modes of a ligand in a single molecular dynamics simulation is difficult. A given ligand may have many internal degrees of freedom, along with many different ways it might orient itself a binding site or across several binding sites, all of which might be separated by large energy barriers. We have developed a novel Monte Carlo move called Molecular Darting (MolDarting) to reversibly sample between predefined binding modes of a ligand. Here, we couple this with nonequilibrium candidate Monte Carlo (NCMC) to improve acceptance of moves.</div><div>We apply this technique to a simple dipeptide system, a ligand binding to T4 Lysozyme L99A, and ligand binding to HIV integrase in order to test this new method. We observe significant increases in acceptance compared to uniformly sampling the internal, and rotational/translational degrees of freedom in these systems.</div>


2017 ◽  
Author(s):  
Samuel Gill ◽  
Nathan M. Lim ◽  
Patrick Grinaway ◽  
Ariën S. Rustenburg ◽  
Josh Fass ◽  
...  

<div>Accurately predicting protein-ligand binding is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes.</div><div><br></div><div>In this technique the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over two orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step towards applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which is freely available on GitHub.</div>


2018 ◽  
Author(s):  
Samuel Gill ◽  
Nathan M. Lim ◽  
Patrick Grinaway ◽  
Ariën S. Rustenburg ◽  
Josh Fass ◽  
...  

<div>Accurately predicting protein-ligand binding is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes.</div><div><br></div><div>In this technique the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over two orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step towards applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which is freely available on GitHub.</div>


Sign in / Sign up

Export Citation Format

Share Document