scholarly journals The Potency of Bovine Bone Gelatin as Antihypertensive Agent: A Review

2021 ◽  
Vol 16 (3) ◽  
pp. 153-165
Author(s):  
Irma Khikmawati ◽  
Savira Margi Rahayu ◽  
Annisa Nur Amieni, ◽  
Muhammad Cahyadi

This review was purposed to understand the effectiveness of bovine bone gelatin as an antihypertensive agent. This review concerning the effectiveness of bovine bone gelatin as an antihypertensive agent. Hypertension, also called as a silent disease, has become the main cause of coronary heart disease and stroke that contributes to the malfunction of human organs. Changes of lifestyle alongside with science enhancement, provides new inventions regarding methods of hypertension therapy by minimizing the use of synthetic drugs. Collagen tissue of bovine bone gelatin is known to contain angiotensin converting enzyme (ACE) inhibitor, an active peptide that plays a role in lowering blood pressure supporting with the large amount of Gly (27%), Pro (17.6%), and Hyp (14.4%) and repeating pattern of Gly-X-Y. A study was carried out in vivo using injected spontaneously hypertensive rats (SHR) with 30 mg/kg and was able to reduce blood pressure by 15 mmHg. Antihypertensive test with SHR tail-cuff at 30 mg/kg bovine gelatin hydrolysate RGL-(Hyp)-GL and RGM-(Hyp)-GF were 31.3 mmHg and 38.6 mmHg respectively. A study conducted using bovine and porcine gelatin with 30–50 kDa (permeate P1) and 1–2 kDa (permeate P3) was able to reduce blood pressure by 22 mmHg and 21.33 mmHg. In addition, it is still possible conducting research to find out other peptides of bovine bone gelatin that can be used as a future alternative antihypertensive agent.

2007 ◽  
Vol 35 (03) ◽  
pp. 487-496 ◽  
Author(s):  
Jun-Rong Du ◽  
Yan Yu ◽  
Yao Yao ◽  
Bo Bai ◽  
Xu Zong ◽  
...  

Radix Angelica sinensis, known as Danggui in Chinese, has been used to treat cardiovascular diseases in traditional Chinese medicine for a long time. Experimental evidence showed that the essential oil of Danggui could reduce blood pressure in rabbits, cats or hypertensive dogs when given intravenously. In this study, we investigated the effects of Z-ligustilide, the main lipophilic component of the essential oil of Danggui on aortic tension induced by phenylephrine, an alpha-adrenergic agonist, in vitro and the systolic blood pressure in SHR rats. We demonstrated for the first time that ligustilide can significantly reduce the phenylephrine-induced aortic tension in vitro with IC50 about 64 μg/ml, but has no in vivo effect on systolic blood pressure in SHR rats when administrated orally. The data on transport of ligustilide across Caco-2 monolayer suggested an efficient intestinal absorption of ligustilide in vivo, implying that the non-effectiveness of ligustilide in vivo is not due to the poor absorption in the gastrointestinal tract. Further studies on whether ligustilide is one of the main anti-hypertensive components of the essential oil are needed.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2305
Author(s):  
Wan-Ju Yeh ◽  
Jung Ko ◽  
Wei-Yi Cheng ◽  
Hsin-Yi Yang

High blood pressure is a crucial risk factor for many cardiovascular diseases, and a diet rich in whole-grain foods may modulate blood pressure. This study investigated the effects of dehulled adlay consumption on blood pressure in vivo. We initially fed spontaneous hypertensive rats diets without (SHR group) or with 12 or 24% dehulled adlay (SHR + LA and SHR + HA groups), and discovered that it could limit blood pressure increases over a 12-week experimental period. Although we found no significant changes in plasma, heart, and kidney angiotensin-converting enzyme activities, both adlay-consuming groups had lower endothelin-1 and creatinine concentrations than the SHR group; the SHR + HA group also had lower aspartate aminotransferase and uric acid levels than the SHR group did. We later recruited 23 participants with overweight and obesity, and they consumed 60 g of dehulled adlay daily for a six-week experimental period. At the end of the study, we observed a significant decrease in the group’s systolic blood pressure (SBP), and the change in SBP was even more evident in participants with high baseline SBP. In conclusion, our results suggested that daily intake of dehulled adlay had beneficial effects in blood-pressure management. Future studies may further clarify the possible underlying mechanisms for the consuming of dehulled adlay as a beneficial dietary approach for people at risk of hypertension.


2016 ◽  
pp. 1039-1044
Author(s):  
M. PRAVENEC ◽  
V. LANDA ◽  
V. ZÍDEK ◽  
P. MLEJNEK ◽  
J. ŠILHAVÝ ◽  
...  

The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and left ventricular hypertrophy. Catecholamines play an important role in the pathogenesis of both essential hypertension in humans and in the SHR. Recently, we obtained evidence that the SHR harbors a variant in the gene for dopamine beta hydroxylase (Dbh) that is associated with reduced adrenal expression of Dbh mRNA and reduced DBH enzymatic activity which correlated negatively with blood pressure. In the current study, we used a transgenic experiment to test the hypothesis that reduced Dbh expression predisposes the SHR to hypertension and that augmentation of Dbh expression would reduce blood pressure. We derived 2 new transgenic SHR-Dbh lines expressing Dbh cDNA under control of the Brown Norway (BN) wild type promoter. We found modestly increased adrenal expression of Dbh in transgenic rats versus SHR non-transgenic controls that was associated with reduced adrenal levels of dopamine and increased plasma levels of norepinephrine and epinephrine. The observed changes in catecholamine metabolism were associated with increased blood pressure and left ventricular mass in both transgenic lines. We did not observe any consistent changes in brainstem levels of catecholamines or of mRNA levels of Dbh in the transgenic strains. Contrary to our initial expections, these findings are consistent with the possibility that genetically determined decreases in adrenal expression and activity of DBH do not represent primary determinants of increased blood pressure in the SHR model.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dao Wen Wang ◽  
Bin Xiao ◽  
Yong Wang ◽  
Xiaojun Xiong ◽  
Darryl C Zeldin

Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have potent vasodilatory and diuretic feature, and therefore potentially hypotensive effect. No in vivo studies, however, were performed to support it. This study investigated the hypothesis via overexpressing CYP epoxygense genes in spontaneously hypertensive rats (SHR). Recombinant adeno-associated virus vector (rAAV) was utilized to mediate long-term transfection of CYP2J2 and CYP2C11 genes, respectively, in adult SHR, and animal systolic blood pressure (SBP) was monitored using arterial caudilis indirect manometric method. Results showed that at 2 months the urinary excretion of stable hydrolysis metabolic product of 14, 15-EE, 14–15-DHET increased by 11 and 8.7 folds in rAAV-2J2 and rAAV-2C11 groups, respectively, compared with AAV-GFP-treated rats. (2) SBP in 2J2- and 2C11-treated rats decreased from 175.0 ± 2.8mHg to 163.5 ± 5.8mmHg and 161.2 ± 6.1 mmHg, respectively, ( p <0.01) at month 2, and it is 165.0 ± 4.7 mmHg and 173.0 ± 12.8 mmHg at month 6 after gene injection (~30mmHg and ~23mmHg lowerer than that in control animals, respectively, p <0.001). (3) Before the rats were sacrificed, cardiac function tests with Pressure-Volume System showed that maximum intracardiac pressure was 202.1 ± 30.0 & 209.1 ± 17.1mmHg in two gene-treated rats, respectively, significantly lower than control (241.2 ± 18.2mmHg, p <0.01) and cardiac output in treatment rats were significantly higher than control (p<0.05). (4) Interestingly, atrial natriuretic peptide (ANP) mRNA were up-regulated 6–14 folds respectively in myocardium of 2J2 and 2C11 groups; furthermore, C-type receptor mRNA of ANP was increased in heart, lung, kidney and aorta. (5) in cultured atrial cells (HLB2G5), exogenous EETs stimulated ANP production. In conclusions, for first time our data indicates overexpression of CYP2J2 or CYP2C11 could prevent development of hypertension in SHR, improve cardiac functions, which may involve up-regulating ANP expression and its receptors in target tissues, which suppresses collagen deposition and cardiovascular remodeling.


1999 ◽  
Vol 276 (3) ◽  
pp. H944-H952 ◽  
Author(s):  
Stephanie W. Watts ◽  
Gregory D. Fink

We previously demonstrated a change in the receptors mediating 5-hydroxytryptamine (5-HT)-induced contraction in arteries of deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Specifically, contraction to 5-HT is mediated primarily by 5-HT2A receptors in arteries from normotensive sham rats and by both 5-HT2A and 5-HT2B receptors in arteries from hypertensive rats. We hypothesized that the 5-HT2B receptor may play a role in maintaining the high blood pressure of DOCA-salt-hypertensive rats, and herein we provide data connecting in vitro and in vivo findings. The endothelium-denuded isolated superior mesenteric artery of DOCA-salt rats displayed a marked increase in maximum contraction to the newly available 5-HT2B-receptor agonist BW-723C86 compared with that of arteries from sham rats, confirming that the 5-HT2B receptor plays a greater role in 5-HT-induced contraction in arteries from DOCA-salt rats. In chronically instrumented rats, the 5-HT2B-receptor antagonist LY-272015 (0.3, 1.0, and 3.0 mg/kg iv at 30-min intervals) was given cumulatively 1 time/wk during 4 wk of continued DOCA-salt treatment. LY-272015 did not reduce blood pressure of the sham-treated rats at any time or dose. However, LY-272015 (1.0 and 3.0 mg/kg) significantly reduced mean blood pressure in a subgroup of week 3 (−20 mmHg) and week 4 DOCA-salt (−40 mmHg) rats that had extremely high blood pressure (mean arterial blood pressure ∼200 mmHg). Blockade of 5-HT2Breceptors by in vivo administration of LY-272015 (3.0 mg/kg) was verified by observing reduced 5-HT-induced contraction in rat stomach fundus, the tissue from which the 5-HT2B receptor was originally cloned. These data support the novel hypothesis that 5-HT2B-receptor expression is induced during the development of DOCA-salt hypertension and contributes to the maintenance of severe blood pressure elevations.


2018 ◽  
Vol 9 (3) ◽  
pp. 1657-1671 ◽  
Author(s):  
Shyan Yea Chay ◽  
Annas Salleh ◽  
Nor Fazila Sulaiman ◽  
Najib Zainal Abidin ◽  
Mohamad Ariff Hanafi ◽  
...  

Winged bean seed hydrolysate is found to reduce blood pressure in spontaneously hypertensive rats. Peptide of non-Current Good Manufacturing Practice grade demonstrates toxicity and is not suitable for testing in animals.


2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2092098
Author(s):  
Yang Fu ◽  
Peipei Yuan ◽  
Yingying Ke ◽  
Yangang Cao ◽  
Qi Zhang ◽  
...  

The antihypertensive mechanism was studied of the ethyl acetate fraction of the ethanol extract (EAPF) of Gardenia jasminoides var. radicans Makino (GJRM). GJRM is a fake product of Gardenia jasminoides Ellis ( G. jasminoides), but in China’s Henan province, the production of GJRM is much more than G. jasminoides’s, but its traditional usage is as a dye. Gardenia jasminoides can be used to reduce blood pressure and blood glucose levels. The chemical compositions of GJRM and G. jasminoides are similar, and we previously confirmed that GJRM can also reduce blood pressure. Here, we report that the EAPF of GJRM could activate the phosphoinositide 3-kinases (PI3K) pathway in the kidneys of spontaneously hypertensive rats, thus increasing the content of nitric oxide and bradykinin in sera and decreasing endothelin-1 content. EAPF can also decrease the levels of with-no-lysine kinase 1 (WNK1) expression, WNK4 and oxidative stress-responsive kinase 1 messenger ribonucleic acid (mRNA), and Na-K-2Cl cotransporter and sodium chloride cotransporters mRNA and phosphorylation. To investigate the antihypertensive effects of the EAPF of GJRM, 5 monoterpenoids isolated from EAPF were studied for their effects on NRK52e and IMCD3 cells. These compounds inhibited the PI3K-WNK signaling pathway to varying degrees under hypotonic conditions; 4-methoxyrehmapicrogenin had the best effect.


Life Sciences ◽  
1988 ◽  
Vol 42 (19) ◽  
pp. 1861-1868 ◽  
Author(s):  
Takehiko Tominaga ◽  
Hiromichi Suzuki ◽  
Yasuhide Ogata ◽  
Toshio Imafuku ◽  
Takao Saruta

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Patrícia Dias ◽  
Jana Pourová ◽  
Marie Vopršalová ◽  
Iveta Nejmanová ◽  
Přemysl Mladěnka

Regular intake of polyphenol-rich food has been associated with a wide variety of beneficial health effects, including the prevention of cardiovascular diseases. However, the parent flavonoids have mostly low bioavailability and, hence, their metabolites have been hypothesized to be bioactive. One of these metabolites, 3-hydroxyphenylacetic acid (3-HPAA), formed by the gut microbiota, was previously reported to exert vasorelaxant effects ex vivo. The aim of this study was to shed more light on this effect in vivo, and to elucidate the mechanism of action. 3-HPAA gave rise to a dose-dependent decrease in arterial blood pressure when administered i.v. both as a bolus and infusion to spontaneously hypertensive rats. In contrast, no significant changes in heart rate were observed. In ex vivo experiments, where porcine hearts from a slaughterhouse were used to decrease the need for laboratory animals, 3-HPAA relaxed precontracted porcine coronary artery segments via a mechanism partially dependent on endothelium integrity. This relaxation was significantly impaired after endothelial nitric oxide synthase inhibition. In contrast, the blockade of SKCa or IKCa channels, or muscarinic receptors, did not affect 3-HPAA relaxation. Similarly, no effects of 3-HPAA on cyclooxygenase nor L-type calcium channels were observed. Thus, 3-HPAA decreases blood pressure in vivo via vessel relaxation, and this mechanism might be based on the release of nitric oxide by the endothelial layer.


Sign in / Sign up

Export Citation Format

Share Document