scholarly journals Pengujian Keselamatan Thermal pada Battery Pack Sepeda Motor Listrik Berdasarkan Regulasi UN R-136

2020 ◽  
Vol 11 (3) ◽  
pp. 347-356
Author(s):  
Alief Wikarta ◽  
◽  
M. Nur Yuniarto ◽  
Indra Sidharta

The electric-motorcycle is one of the promising technology that can improve environmental quality as well as reduce dependency on oil imports in Indonesia. The major challenge of electric-motorcycle implementation is the safety of the lithium-ion battery pack. This research aims to ascertain the over-temperature protection, and also to carry out shock & cycling test for the battery thermal safety. The testing procedures and apparatus comply with the United Nations Regulation No 136 (UN R-136), namely a temperature humidity chamber, a battery load unit, a blower, and a charger. The first step is the designing and prototyping of the battery pack with 100 V and 30 Ah, which contains a module of cells, Battery Management System (BMS), wiring, isolator, socket, and aluminum casing. The second step is the battery thermal safety test. The results showed that the battery pack satisfied the acceptance criteria, with evidence of no electrolyte leakage, rupture, fire, and explosion during and after testing. Result of over-temperature protection, BMS can cut-off the discharge rate at a temperature of 45.89°C. Meanwhile, for thermal shock & cycling tests, the battery pack did not fail when the temperature changes from 59.72°C and -40.25°C for 60 hours.

2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2014 ◽  
Vol 986-987 ◽  
pp. 1842-1845
Author(s):  
Yi Ning Chen ◽  
Yu Gui ◽  
Hong He

As the key technology of the electric vehicle, more and more research on battery management system has been done. And the balancing technology is the important part of battery management system. In this paper, a multi-inductor balancing method based on the Buck-Boost topological structure is used to improve batteries’ inconsistencies by obtaining parameters of the battery pack in real time. The proposed balancing method can improve batteries’ inconsistencies so as to increase the capacity utilization rate of the battery pack and prolong the battery lifespan. And in this paper a series of bench experiments were done to examine the effectiveness of the balancing method.


Author(s):  
Soeprapto Soeprapto ◽  
Rini Nur Hasanah ◽  
Taufik Taufik

<span>Electric bike (E-Bike) is a bicycle driven using an electric motor and uses batteries as the energy source. It is environmentally friendly as no exhaust gas is resulted during its operation. More than one battery is normally required, being arranged in series or in parallel connection. Over limit or overloaded conditions of battery usage will reduce the lifecycle of battery, speed up its replacement and add to the maintenance cost of electric bike. This paper proposes the prevention of such degrading condition using a tool to manage the battery usage both during the charging and discharging process. The proposed electronic Battery Management System (BMS) serves to regulate, monitor, and maintain the condition of batteries to prevent any possible damage. The resulted BMS design could provide a well balancing action in a battery system consisting of 13 cells utilizing the cell-to-cell active balancing method. The test results showed that the proposed BMS could monitor the individual cell voltage with an average error of 0.032 V (0.824</span><span lang="IN">%</span><span>), while reading the charge and discharge current with an average error of 0.04 A (</span><span lang="IN">6.25%</span><span>), and the battery pack temperature with an average error of 1.21<sup>o</sup>C (</span><span lang="IN">2.9%</span><span>). Additionally, the BMS could offer a functional battery pack protection system from conditions such as undervoltage, overvoltage, overheat, and overcurrent.</span>


The green energy evolution initiated the use of electric and hybrid electric vehicles at present on roads. These vehicles extensively use different types of batteries and among them lithium ion batteries are prominent. The Li-ion battery pack constitutes number of Li-ion battery cells connected in series and parallel configuration. This battery bank needs a suitable battery management system for its efficient operation. This paper presents a novel battery management system to monitor and control the battery current, voltage, state of charge and most importantly the cell temperature. The detail BMS scheme for Li-ion battery pack is presented and simulation is carried out to validate its performance with a driving cycle of electric car.


Author(s):  
Benjamin J. Yurkovich ◽  
Yann Guezennec

In this paper, we introduce a lumped parameter, distributed battery pack dynamic model which allows simulation of the electrical dynamics of all the cells in an arbitrarily configured series/parallel pack typical of those used in automotive applications. The dynamic pack simulator is based on the development of an analytical solution for the dynamic response of a single cell and an analytical development of such elemental solutions into a distributed dynamic pack model which can resolve the dynamics of each cell within the pack. This formulation leads to a computationally efficient simulation tool appropriate for application on large battery packs. This simulation tool is then used to perform Monte Carlo simulations on typical automotive current profiles for packs made of cells with a statistical distribution of parameters. A mild distribution of cell mismatch leads to cell unbalance development and statistical metrics for the growth unbalance, presented and related to both current severity and cell parameter distribution. The tool is ideally suited for studies in Battery Management System (BMS) algorithm development, as well as model-based fault propagation and diagnostics.


Author(s):  
Seyed Reza Hashemi ◽  
Roja Esmaeeli ◽  
Ashkan Nazari ◽  
Haniph Aliniagerdroudbari ◽  
Muapper Alhadri ◽  
...  

Abstract In electric and hybrid-electric aircraft, the battery systems are usually composed of up to thousands of battery cells connected in series or parallel to provide the voltage and power/energy requirements. The inconsistent cells could affect the battery pack and its performance or even endanger electric and hybrid-electric aircraft security; thus, the early fault diagnosis of the battery system is essential. A well-designed battery management system along with a set of reliable voltage and current sensors is required to properly measure and control the cells operational variables in a large battery pack. In this study, based on the battery working mechanism, a new, fast, and robust fault diagnostic scheme is proposed for a lithium-ion battery (LIB) pack that can be employed for applications such as electric and hybrid-electric aircraft. In this method, some faults such as the overcharge, overdischarge occurring in LIB packs can be detected and isolated, based on some predefined factors gained from the battery models in healthy, overcharge, and overdischarge conditions. Finally, the effectiveness of the proposed fast fault diagnosis scheme is experimentally validated with LIBs under a typical flight cycle.


2021 ◽  
Vol 23 (06) ◽  
pp. 805-815
Author(s):  
Ravi P Bhovi ◽  
◽  
Ranjith A C ◽  
Sachin K M ◽  
Kariyappa B S ◽  
...  

Electric cars have evolved into a game-changing technology in recent years. A Battery Management System (BMS) is the most significant aspect of an Electric Vehicle (EV) in the automotive sector since it is regarded as the brain of the battery pack. Lithium-ion batteries have a large capacity for energy storage. The BMS is in charge of controlling the battery packs in electric vehicles. The major role of the BMS is to accurately monitor the battery’s status, which assures dependable operation and prolongs battery performance. The BMS’s principal job is to keep track, estimate, and balance the battery pack’s cells. The major goals of this work are to keep track of battery characteristics, estimate SoC using three distinct approaches, and balance cells. Coulomb Counting, Extended Kalman Filter, and Unscented Kalman Filter are the three algorithms that will be implemented. Current is used as an input parameter to implement the coulomb counting method. In contrast to voltage and temperature, the current value is taken into account by the Extended and Unscented Kalman Filters. To calculate the state transition and measurement update matrix, these parameters are considered. This matrix will then be used to calculate SoC. Results of all the algorithms will be comparatively analyzed. MATLAB R2020a software is used for the simulation of different algorithms and SoC calculation. Three states of BMS are considered and they are Discharging phase, the Standby/resting phase, and the Charging phase. At the beginning of the Simulation, the SoC values of the cells were 80%. At the end of simulation maximum values of SoC of Coulomb counting, Extended Kalman Filter (EKF), and Unscented Kalman Filter (UKF) reached are 100%, 98.74%, and 98.46% respectively. After SoC Estimation, Cell balancing is also performed over 6 cells of the battery pack.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changhao Piao ◽  
Zhaoguang Wang ◽  
Ju Cao ◽  
Wei Zhang ◽  
Sheng Lu

A novel cell-balancing algorithm which was used for cell balancing of battery management system (BMS) was proposed in this paper. Cell balancing algorithm is a key technology for lithium-ion battery pack in the electric vehicle field. The distance-based outlier detection algorithm adopted two characteristic parameters (voltage and state of charge) to calculate each cell’s abnormal value and then identified the unbalanced cells. The abnormal and normal type of battery cells were acquired by online clustering strategy and bleeding circuits (R= 33 ohm) were used to balance the abnormal cells. The simulation results showed that with the proposed balancing algorithm, the usable capacity of the battery pack increased by 0.614 Ah (9.5%) compared to that without balancing.


Sign in / Sign up

Export Citation Format

Share Document