scholarly journals Mapping Soil Productivity Index on Plantation Land in ATP Jatikerto, Kromengan District, Malang Regency

2022 ◽  
Vol 9 (1) ◽  
pp. 83-91
Author(s):  
Destantri Krisdiati ◽  
S Soemarno ◽  
Mochtar Lutfi Rayes

It is feared that the decline in productivity of plantation crops in Malang Regency, so it is necessary to analyze the soil productivity index at ATP Jatikerto as one of the locations for producing plantation plants. This soil productivity index assessment was presented in the form of a map to make it easier to see the distribution pattern of soil productivity in ATP Jatikerto. The results of the calculation of the productivity index showed that the land potential varied from land with poor to sufficient criteria, namely maize land with an IP (Productivity Index) of 43.27, which is included in the bad IP criteria. In coffee, cocoa, sugarcane, papaya, and citrus fields, they are categorized as moderate with IPs of 50.14, respectively; 45.82; 39.45; 52.26; and 45.82. Actions that can be taken to overcome the problem of decreasing productivity are to carry out regular fertilization, both organic and inorganic, to keep nutrients available for cultivated plants, as well as adding organic matter using litter which not only serves to add nutrients but can also be used as organic mulch to prevent raindrops from falling directly to the ground so that the loss of topsoil can be minimized and increase the population of soil microorganisms. In addition, it can also use bagasse, blotong or manure which can improve the physical condition of the soil by reducing soil density and increasing macropores for better root growth, and ultimately increasing sugarcane yield.

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.


2004 ◽  
Vol 35 (9) ◽  
pp. 1015-1024 ◽  
Author(s):  
Anja Miltner ◽  
Hans-Hermann Richnow ◽  
Frank-Dieter Kopinke ◽  
Matthias Kästner

2008 ◽  
Vol 56 (2) ◽  
pp. 169-178
Author(s):  
U. Sangakkara ◽  
S. Nissanka ◽  
P. Stamp

Smallholders in the tropics add different organic materials to their crops at different times, based on the availability of materials and labour. However, the time of application could have an effect on the establishment and early growth of crops, especially their root systems, which has not yet been clearly identified. This paper presents the results of a study conducted under greenhouse conditions using soils from a field treated with three organic materials at 4 or 2 weeks before or at the planting of maize seeds, corresponding to the times that tropical smallholders apply these materials. The organic materials used were leaves of Gliricidia sepium and Tithonia diversifolia or rice straw, incorporated at a rate equivalent to 6 Mt ha −1 . A control treatment where no organic matter was added was used for comparison. The impact of the treatments on soil properties at the planting of maize seed and detailed root analysis based on root lengths were carried out until the last growth stage (V4). The addition of organic matter improved the soil characteristics, and the impact of adding Gliricidia leaves was most pronounced when incorporated 2 weeks before planting. The benefits of leaves of Tithonia or rice straw on soil quality parameters were clearly evident when added 4 weeks before planting. Organic matter enhanced the root number, root length, root growth rate and branching indices. All the organic materials suppressed the growth of maize roots when applied at planting, suggesting the existence of allelopathic effects, which could result in poor growth. The most benefits in terms of root growth were observed with Tithonia .


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 287 ◽  
Author(s):  
V. Gonzalez-Quiñones ◽  
E. A. Stockdale ◽  
N. C. Banning ◽  
F. C. Hoyle ◽  
Y. Sawada ◽  
...  

Since 1970, measurement of the soil microbial biomass (SMB) has been widely adopted as a relatively simple means of assessing the impact of environmental and anthropogenic change on soil microorganisms. The SMB is living and dynamic, and its activity is responsible for the regulation of organic matter transformations and associated energy and nutrient cycling in soil. At a gross level, an increase in SMB is considered beneficial, while a decline in SMB may be considered detrimental if this leads to a decline in biological function. However, absolute SMB values are more difficult to interpret. Target or reference values of SMB are needed for soil quality assessments and to allow ameliorative action to be taken at an appropriate time. However, critical values have not yet been successfully identified for SMB. This paper provides a conceptual framework which outlines how SMB values could be interpreted and measured, with examples provided within an Australian context.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


2021 ◽  
Vol 67 (No. 3) ◽  
pp. 108-115
Author(s):  
Tanko Bako ◽  
Ezekiel Ambo Mamai ◽  
Istifanus Akila Bardey

Based on the hypothesis that soil properties and productivity components should be affected by different tillage methods, field and laboratory experiments were conducted to study the effects of zero tillage (ZT), one pass of disc plough tillage (P), one pass of disc plough plus one pass of disc harrow tillage (PH) and one pass of disc plough plus two passes of disc harrow tillage (PHH) on the distribution of the bulk density, available water capacity, pH, organic matter, available phosphorus, iron oxide and aluminium oxide at different soil depths, and their effects on the soil productivity. The available water capacity, pH, organic matter and available phosphorus were found to increase with the degree of tillage, while the bulk density, iron oxide and aluminium oxide were found to decrease with the degree of tillage. The results show that the soil productivity index was significantly (P ≤ 0.05) affected by the tillage methods and found to increase with the degree of tillage.


Sign in / Sign up

Export Citation Format

Share Document