scholarly journals Influence of Light Intensity on Lipid Productivity and Fatty Acids Profile of Choricystis sp. LBB13-AL045 for Biodiesel Production

2018 ◽  
Vol 5 (2) ◽  
pp. 128-139 ◽  
Author(s):  
Swastika Praharyawan ◽  
Delicia Yunita Rahman ◽  
Dwi Susilaningsih
2021 ◽  
Author(s):  
Hanaa Morsi ◽  
Hamed Eladel ◽  
Ayah Maher

Abstract The present study focused on the feasibility of using municipal wastewater (WW) as culture medium for cultivation of microalgae. The study aimed to assess the efficiency of microalgae in nutrients removing capacity from wastewater and its biomass and lipid productivity for using as biodiesel feedstock. Based on that, the green microalga Asterarcys quadricellulare was isolated and grown for 24 days in Bold’s Basal Medium as a control and at different concentration of secondary treated municipal wastewater (WW) diluted with distilled water (25%, 50%, 75% and 100%WW). Results of 75%WW treatment recorded 96.6%, 98.4%, and 89.9% removal efficiency for, nitrate, ammonia and total phosphorus, respectively. Also, it revealed high biomass productivity and biomass content, where it recorded 69.0 mgL-1 day-1, and 1.44 g/L, respectively. Likewise, high lipid productivity 17.2 mg L−1 day−1 and 360.6 mg/L lipid content. Consequently, Asterarcys quadricellulare fatty acids profile estimation revealed an increase in Oleic, Palmitic and Linoleic acids levels. Most properties of biodiesel derived from the studied microalga meet with values established by the ASTM D6751 and EN 14214 biodiesel standards. According to this analysis, A. quadricellulare microalga could be used for wastewater bioremediation and biomass production with a suitable content of lipids proper as biodiesel feedstock. The predictive biodiesel properties pointed that it has a good quality compared with international standards.


2019 ◽  
Vol 126 ◽  
pp. 211-219 ◽  
Author(s):  
Dong Woo Kim ◽  
Won-Sub Shin ◽  
Min-Gyu Sung ◽  
Bongsoo Lee ◽  
Yong Keun Chang

2012 ◽  
Vol 6 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Iracema Andrade Nascimento ◽  
Sheyla Santa Izabel Marques ◽  
Iago Teles Dominguez Cabanelas ◽  
Solange Andrade Pereira ◽  
Janice Isabel Druzian ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 1439-1457
Author(s):  
Hanaa H. ABD EL BAKY ◽  
Gamal S. EL BAROTY

The biodiesel can be produced from diverse microalgae lipids as alternative and renewable fuel. Thus, the aim of this study was to optimize the Chlamydomonas reinhardtii promising species as biodiesel feedstock for large-scale cultivation in Egypt. To understand some of the triggers required for the metabolic pathway switch to lipid accumulation, the effect of carbon sources and the three elements availability (N, P, S) in C. reinhardtii growth medium was determined. A local microalgae C. reinhardtii was cultured in modified Sueoka medium containing various concentrations of CO2 and bicarbonate (NaHCO3) (in 2-liter flasks) as a carbon source. The optimal source in term biomass, high lipid productivity (10.3 mgL-1d-1) and a higher lipid content (22.76%) were obtained in 6% CO2 culture. Then, the availability of N, P, S (various concentrations of N, P and S) nutrients elements was added to 6% CO2 culture, for produce a highest lipid content and lipid productivity. As expected, under low availability N-1.78 mM; P-0.14mM and S-0.10 mM mediums, C. reinhardtii showed a high accumulation lipid content. Therefore, to improve the economic feasibility of microalgae biofuels production, its concentrations were selected to combine (N+P+S) in order to cultivation of C. reinhardtii in a multi-tubular photobioreactor (400 liter) to produce high lipid contents. Under limited condition, the biomass dry weight, biomass productivity, lipid content and lipid productivity were found to be 3.11 (gL-1), 0.15±0.012 (g-1L-1d-1), 22.76% (w/w %) and 1.9± 0.35 (mg-1L-1d-1), respectively. The extracted lipid was found to have physical and chemical properties similar that plant oils using for biodiesel production. The FAME profiling of prepared biodiesel shows the presence of considerable amount of 36.97% saturated fatty acids (palmitic acid and stearic acid, together) with 27.33% unsaturated (oleic acid and linoleic acid) fatty acids. The FAME had a low iodine value and high CN, which meet with the appropriate of biodiesel standards (EN 14214 and ASTM D6751). Thus, C. reinhardtii appears to be more feasible for high quality biodiesel production.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6098
Author(s):  
Izabela Krzemińska ◽  
Artur Nosalewicz ◽  
Emilia Reszczyńska ◽  
Barbara Pawlik-Skowrońska

Optimization of the fatty acid profile in microalgae is one of the key strategies for obtaining valuable products and sustainable biofuels. Light intensity and light regimes exert an impact on the growth and metabolic process in microalgae. The objective of the present investigations was to assess the effect of light intensity and continuous light vs. photoperiod conditions on the growth and changes in the biomass composition in Eustigmatos magnus, with a focus on bioactive molecules such as lipids and fatty acids. The highest daily productivity of Eustigmatos magnus biomass and lipid yields were detected at continuous illumination and at the highest intensity of light. The results show that the content and composition of fatty acids was influenced by the culture conditions. The biomass of Eustigmatos magnus contained the highest concentrations of polyunsaturated fatty acids in the pphotoperiod conditions with the highest light intensity. This study shows that Eustigmatos magnus has a capacity for the accumulation of palmitoleic acid. A high intensity of continuous light improves the profile of fatty acids in Eustigmatos magnus, which can be suitable for biodiesel applications. At the high intensity of continuous light, Eustigmatos magnus lipids are characterized by high content of oleic acids and low content of saturated and monounsaturated acids.


2018 ◽  
Vol 156 ◽  
pp. 03024
Author(s):  
Timotius Candra Kusuma ◽  
Anggun Rindang Pratiwi ◽  
Septiandre ◽  
Siti Zulaikah

The biomass and lipid productivity of Chlorella vulgaris cultured in sea water media were conducted in this study. The effect of light intensity (5000 and 10000 lux), CO2 gas concentration (0.03%, 1% and 2%), culturing period (7 and 17 days) and walne nutrient concentrations (0%, 0.05%, 0.1% and 0.3%) on biomass and lipid productivity of C. vulgaris cultured in photobioreactor were studied systematically. The biomass and lipid productivity were increased with increasing light intensity and CO2 gas concentration. Longer culturing period, C. vulgaris produced more biomass and lipid content. However, biomass and lipid productivity at shorter cultured period were higher than longer cultured period. The highest biomass productivity of 139 mg/L/d was obtained under the following condition: light intensity = 10000 lux, CO2 gas concentration = 2%, culturing period = 7 days, and walne nutrient concentration = 0.3%. The highest lipid productivity of 40.68 mg/L/d was obtained under the following condition: light intensity = 10000 lux, CO2 gas concentration = 2%, culturing period = 7 days, and walne nutrient concentration = 0.005%. This study shows that a microalga C. vulgaris was a potential candidate as a source of biodiesel production.


Author(s):  
Eduardo Henrique Bredda ◽  
Patrícia Caroline Molgero Da Rós ◽  
Guilherme Arantes Pedro ◽  
Heizir Ferreira de Castro ◽  
Messias Borges Silva

Introduction: Microalgal lipids have a wide range of applications, from biodiesel manufacture in the energy industry to the production of polyunsaturated fatty acids for the pharmaceutical industry. Microalgal lipid productivity and quality, however, vary greatly depending on cultivation parameters. Aims: In this study, we investigated the potential of two marine microalgae, Nannochloropsis gaditana and Dunaliella salina, to be used as feedstock for biodiesel production. Methodology: A Taguchi L4 orthogonal array design was applied to understand the effects of sodium acetate (0 or 2 g L−1), sodium bicarbonate (0 or 2 g L−1), and sodium nitrate (25 or 75 mg L−1) concentrations on biomass and lipid productivities. Fatty acid methyl ester (FAME) profiles of microalgal lipids obtained under the best conditions were determined, and FAME results were used to predict biodiesel properties. Results: Both carbon sources (sodium acetate and sodium bicarbonate) improved biomass productivity. Lipid productivity was enhanced only by sodium acetate. The highest lipid productivities obtained were 10.25 ± 1.02 and 12.12 ± 0.28 mg L−1 day−1 for N. gaditana and D. salina, respectively. Palmitic (C16:0), stearic (C18:1), oleic (C18:1), linoleic (C18:2), lauric (C12:0), and myristic (C14:0) acids were the major components of D. salina oil. The major fatty acids in N. gaditana oil were C16:0, C18:0, and C18:1. Conclusion: The great differences in FAME profiles resulted in different biodiesel properties. Biodiesel from N. gaditana oil was predicted to have a higher cetane number (73.20) than that derived from D. salina oil (59.59). D. salina oil biodiesel, however, was predicted to have better properties than N. gaditana oil biodiesel, including lower cloud point (0.46°C) and cold filter plugging point (−7.27°C).


2014 ◽  
Vol 69 (9) ◽  
pp. 1813-1819 ◽  
Author(s):  
Siok Ling Low ◽  
Say Leong Ong ◽  
How Yong Ng

Microalgae in three submerged ceramic membrane photobioreactors (SCMPBRs) with different hydraulic retention times (HRTs) were fed with permeate of a submerged ceramic membrane bioreactor for a period of 3 months to investigate the lipid content and also the biodiesel quality produced at different HRTs. The lipid content, lipid productivity and fatty acid compositions for all three SCMPBRs were not significantly different at the 95% confidence level. These results suggested that insignificant change in the amount of fatty acids was observed at different HRTs that supplied varying concentration of nitrate in the medium. Among the fatty acids, palmitic acid, palmitoleic acid, oleic acid and linoleic acid were the main components, whereas stearic acid was a minor fatty acid. Since there was insignificant effect of HRT on lipid content, lipid productivity and fatty acid compositions, the optimum HRT for SCMPBRs can then be designed based on optimum nutrient removal performance and low membrane fouling propensity.


Sign in / Sign up

Export Citation Format

Share Document