Research of network attacks detection methods

Author(s):  
P. V. Frolov ◽  
E. V. Vershinin ◽  
S. A. Medvedeva

This paper reviews existing methods of network attacks detecting. A brief description of methods, their main features, advantages and disadvantages are given in accordance with the generally accepted classification of detection methods. During the initial analysis evidently inappropriate methods for this study were pointed out. Criteria for estimation of suitable methods for detecting cyberattacks in real time are given (recal, precision, F-measure). Each suitable method was estimated in accordance with the criteria. The comparative analysis of intrusion detection methods was carried out based on the obtained estimates. The most effective methods for solving problems of detecting cyberattacks in real time were chosen. A brief description of further research is given, which is based on the obtained results.

2020 ◽  
pp. 29-45
Author(s):  
O.A. Naydis ◽  
I.O. Naydis

The article considers the types, forms, mechanisms and classification of mergers and acquisitions, identifies their positive effects, and studies the tactics of acquisitions. The analysis of anti-capture measures: active and preventive methods of protection against hostile mergers and acquisitions. A comparative analysis of anti-capture measures with acquisitions tactics was carried out, the advantages and disadvantages of their application were identified.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7326
Author(s):  
Alper Kaan Sarica ◽  
Pelin Angin

The significant advances in wireless networks in the past decade have made a variety of Internet of Things (IoT) use cases possible, greatly facilitating many operations in our daily lives. IoT is only expected to grow with 5G and beyond networks, which will primarily rely on software-defined networking (SDN) and network functions virtualization for achieving the promised quality of service. The prevalence of IoT and the large attack surface that it has created calls for SDN-based intelligent security solutions that achieve real-time, automated intrusion detection and mitigation. In this paper, we propose a real-time intrusion detection and mitigation solution for SDN, which aims to provide autonomous security in the high-traffic IoT networks of the 5G and beyond era, while achieving a high degree of interpretability by human experts. The proposed approach is built upon automated flow feature extraction and classification of flows while using random forest classifiers at the SDN application layer. We present an SDN-specific dataset that we generated for IoT and provide results on the accuracy of intrusion detection in addition to performance results in the presence and absence of our proposed security mechanism. The experimental results demonstrate that the proposed security approach is promising for achieving real-time, highly accurate detection and mitigation of attacks in SDN-managed IoT networks.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3995 ◽  
Author(s):  
Yaoguang Wei ◽  
Yisha Jiao ◽  
Dong An ◽  
Daoliang Li ◽  
Wenshu Li ◽  
...  

Dissolved oxygen is an important index to evaluate water quality, and its concentration is of great significance in industrial production, environmental monitoring, aquaculture, food production, and other fields. As its change is a continuous dynamic process, the dissolved oxygen concentration needs to be accurately measured in real time. In this paper, the principles, main applications, advantages, and disadvantages of iodometric titration, electrochemical detection, and optical detection, which are commonly used dissolved oxygen detection methods, are systematically analyzed and summarized. The detection mechanisms and materials of electrochemical and optical detection methods are examined and reviewed. Because external environmental factors readily cause interferences in dissolved oxygen detection, the traditional detection methods cannot adequately meet the accuracy, real-time, stability, and other measurement requirements; thus, it is urgent to use intelligent methods to make up for these deficiencies. This paper studies the application of intelligent technology in intelligent signal transfer processing, digital signal processing, and the real-time dynamic adaptive compensation and correction of dissolved oxygen sensors. The combined application of optical detection technology, new fluorescence-sensitive materials, and intelligent technology is the focus of future research on dissolved oxygen sensors.


2014 ◽  
Vol 926-930 ◽  
pp. 3157-3160
Author(s):  
Zhan Huang ◽  
Yu Ying Jiang ◽  
Lu Bin Li

The main purpose of a computer intrusion detection system is to accurately distinguish between self and non-self. A novel intrusion detection model based on ARTIS model is proposed by introducing the Red Flower and Green Leaf concepts, and by coordinated use of RF variable length and GL fixed length detectors. Intrusion detection methods are optimized to ensure the quick detection of abnormal behaviors making the model more suitable for real-time intrusion detection and more accurately to distinguish between self-and non-self.


2021 ◽  
Author(s):  
Priyanka Gupta ◽  
Lokesh Yadav ◽  
Deepak Singh Tomar

The Internet of Things (IoT) connects billions of interconnected devices that can exchange information with each other with minimal user intervention. The goal of IoT to become accessible to anyone, anytime, and anywhere. IoT has engaged in multiple fields, including education, healthcare, businesses, and smart home. Security and privacy issues have been significant obstacles to the widespread adoption of IoT. IoT devices cannot be entirely secure from threats; detecting attacks in real-time is essential for securing devices. In the real-time communication domain and especially in IoT, security and protection are the major issues. The resource-constrained nature of IoT devices makes traditional security techniques difficult. In this paper, the research work carried out in IoT Intrusion Detection System is presented. The Machine learning methods are explored to provide an effective security solution for IoT Intrusion Detection systems. Then discussed the advantages and disadvantages of the selected methodology. Further, the datasets used in IoT security are also discussed. Finally, the examination of the open issues and directions for future trends are also provided.


2015 ◽  
Vol 78 (4) ◽  
pp. 723-727 ◽  
Author(s):  
HYEWON SHIN ◽  
MINHWAN KIM ◽  
EUNJU YOON ◽  
GYOUNGWON KANG ◽  
SEUNGYU KIM ◽  
...  

Staphylococcus aureus, the species most commonly associated with staphylococcal food poisoning, is one of the most prevalent causes of foodborne disease in Korea and other parts of the world, with much damage inflicted to the health of individuals and economic losses estimated at $120 million. To reduce food poisoning outbreaks by implementing prevention methods, rapid detection of S. aureus in foods is essential. Various types of detection methods for S. aureus are available. Although each method has advantages and disadvantages, high levels of sensitivity and specificity are key aspects of a robust detection method. Here, we describe a novel real-time isothermal target and probe amplification (iTPA) method that allows the rapid and simultaneous amplification of target DNA (the S. aureus nuc gene) and a fluorescence resonance energy transfer–based signal probe under isothermal conditions at 61°C or detection of S. aureus in real time. The assay was able to specifically detect all 91 S. aureus strains tested without nonspecific detection of 51 non–S. aureus strains. The real-time iTPA assay detected S. aureus at an initial level of 101 CFU in overnight cultures of preenriched food samples (kiwi dressing, soybean milk, and custard cream). The advantage of this detection system is that it does not require a thermal cycler, reducing the cost of the real-time PCR and its footprint. Combined with a miniaturized fluorescence detector, this system can be developed into a simplified quantitative hand-held real-time device, which is often required. The iTPA assay was highly reliable and therefore may be used as a rapid and sensitive means of identifying S. aureus in foods.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 416
Author(s):  
Sama Molaie ◽  
Paolo Lino

Due to the adverse effects on human health and the environment, air quality monitoring, specifically particulate matter (PM), has received increased attention over the last decades. Most of the research and policy actions have been focused on decreasing PM pollution and the development of air monitoring technologies, resulting in a decline of total ambient PM concentrations. For these reasons, there is a continually increasing interest in mobile, low-cost, and real-time PM detection instruments in both indoor and outdoor environments. However, to the best of the authors’ knowledge, there is no recent literature review on the development of newly designed mobile and compact optical PM sensors. With this aim, this paper gives an overview of the most recent advances in mobile optical particle counters (OPCs) and camera-based optical devices to detect particulate matter concentration. Firstly, the paper summarizes the particulate matter effects on human health and the environment and introduces the major particulate matter classes, sources, and characteristics. Then, it illustrates the different theories, detection methods, and operating principles of the newly developed portable optical sensors based on light scattering (OPCs) and image processing (camera-based sensors), including their advantages and disadvantages. A discussion concludes the review by comparing different novel optical devices in terms of structures, parameters, and detection sensitivity.


2019 ◽  
Vol 8 (3) ◽  
pp. 1391-1395

The ongoing increase in the use of wireless Internet and smartphones has resulted in changing consumer patterns, which has changed the demand for network usage such that existing hardware-centric devices cannot satisfy this demand. One of the fastest growing technologies is software define network, which can solve this problem. An intrusion detection system is a system that detects and responds to network attacks in real time in a network environment based on software define network. The focus of this paper is to present a deep learning-based network detection system. We describe pre-processing for deep learning algorithms and propose an architecture of the detection system. The analysis results of the system are also described


Author(s):  
I.A. Lagerev ◽  
◽  
A.V. Lagerev ◽  
V.I. Tarichko ◽  
◽  
...  

Mobile ropeways formed by mobile transport and reloading rope complexes (terminal stations) on the basis of self-propelled wheeled chassis of high load capacity and cross-country ability are a promising type of transporting equipment for use in many branches of industrial production and maintenance – construction and mining industry, forestry and agriculture, elimination of the consequences of natural and man-made disasters, etc. The article develops a classification of self-propelled terminal stations based on such features as the location of the key element of the main technological equipment — the end tower of the rope system — on a wheeled chassis and the type of its fixation in the working position during the operation of the mobile ropeway. As promising variants of the structural design of mobile transport and technological rope complexes, options with an end, central and remote arrangement of the end tower; with hydraulic, rope, rope-hydraulic and rod types of fixing the end tower in the working position; with the installation of the end tower in the working position directly by a lifting hydraulic cylinder, using a folding rod and two-stage lifting are proposed. A brief description of the designs and the principle of operation of a large number of modifications of self-propelled terminal stations of various listed variants of the structural design of mobile rope complexes is given when preparing them for operation and during operation itself. A comparative analysis of the considered variants of mobile rope complexes is carried out on the basis of taking into account their main design and technical and economic characteristics, which made it possible to formulate both advantages and disadvantages of different design options.


2015 ◽  
Vol 24 (14) ◽  
pp. 1530031 ◽  
Author(s):  
Kazuaki Kuroda ◽  
Wei-Tou Ni ◽  
Wei-Ping Pan

After giving a brief introduction and presenting a complete classification of gravitational waves (GWs) according to their frequencies, we review and summarize the detection methods, the sensitivities and the sources. We notice that real-time detections are possible above 300 pHz. Below 300 pHz, the detections are possible on GW imprints or indirectly. We are on the verge of detection. The progress in this field will be promising and thriving. We will see improvement of a few orders to several orders of magnitude in the GW detection sensitivities over all frequency bands in the next hundred years.


Sign in / Sign up

Export Citation Format

Share Document