scholarly journals THE NEW PLASTIC METHOD OF ARTICULAR HYALINE CARTILAGE DEFECTS WITH COMBINED CELLULAR-TISSUE GRAFT

2010 ◽  
Vol 16 (1) ◽  
pp. 150-155
Author(s):  
G. P. Kotelnikov ◽  
L. T. Volova ◽  
Yu. V. Lartsev ◽  
D. A. Dolgushkin ◽  
M. A. Terteryan

The new method of restoration of injured articular cartilage using plasty of intraoperative bone-cartilage defects with combined allograft based on biologic porous carrier and cell culture from stroma of costal cartilage. The transplantation of allogenic culture of chondroblast cells on demineralized spongy substance «Lioplast» ensure еру the formation of hyaline cartilage tissue on the site of defect and amplified development of microcirculatory network in subchondral bone. The heterotopic principle obtaining cellular material allows to perform low-traumatic operations.

Author(s):  
Timur B. Minasov ◽  
Ekaterina R. Yakupova ◽  
Dilmurod Ruziboev ◽  
Ruslan M. Vakhitov-Kovalevich ◽  
Ruslan F. Khairutdinov ◽  
...  

Degenerative pathology of the musculoskeletal system is one of the main reasons for decreased mobility in patients of the older age group. Increasing the life expectancy leads to predominance non-epidemic pathology in all developed countries. Therefore, degenerative diseases of musculoskeletal system have not only medical significance but also social significance. Objective is studying the morphological features of synovial environment of the decompensated osteoarthritic (OA) knee joint. Structural features of subchondral bone, hyaline cartilage of the femur and tibia, the articular capsule, menisci and ligamentous apparatus of the knee joint were studied in 64 patients who underwent total knee arthroplasty at the Department of Traumatology and Orthopedics Bashkirian State Medical University in the period from 2015 to 2020. Material selection, preparation of histological samples, staining with hematoxylin-eosin, microscopy was performed. Adaptive signs of articular cartilage of the femoral condyles manifest in the form of cartilage tissue rearrangement, which are most pronounced in the central zone of the cartilage. At the same time, the phenomena of decompensation and significant areas of destruction are noted. Also, the subchondral bone was replaced with connective tissue with subsequent sclerosis. This sclerosis subsequently led to the decompensation of structures of the hyaline cartilage in the deep and middle zones. Destructive and dystrophic processes were noted in the knee joint menisci. Articular cartilage was replaced with granulation tissue with subsequent invasion of blood vessels. Cruciate ligaments in patients with OA show signs of adaptation due to expansion of endothenonium layers between bundles of collagen fibers and an increase in the diameter of blood vessels.


2020 ◽  
Author(s):  
Zelong Dou ◽  
Daniel Muder ◽  
Marta Baroncelli ◽  
Ameya Bendre ◽  
Alexandra Gkourogianni ◽  
...  

AbstractReconstruction of articular surfaces destroyed by infection or trauma is hampered by the lack of suitable graft tissues. Perichondrium autotransplants have been used for this purpose. However, the role of the transplanted perichondrium in the healing of resurfaced joints have not been investigated. Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112 days after surgery. Transplanted cells and their progenies were readily detected in the defects of perichondrium and periosteum transplanted animals but not in defects left without a transplant. Perichondrium transplants expressed SOX9 and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-positive chondrocytes and a matrix rich in proteoglycans. Interestingly, at later timepoints the cartilaginous perichondrium transplants were actively remodeled into bone at the transplant-bone interface and at post-surgery day 112 EGFP-positive perichondrium cells at the articular surface were positive for Prg4. In addition, both perichondrium and periosteum transplants contributed cells to the subchondral bone and bone marrow, suggesting differentiation into osteoblast/osteocytes as well as bone marrow cells. In summary, we found that perichondrium transplanted to articular cartilage defects develops into an articular-like, hyaline cartilage that integrates with the subchondral bone, and is maintained for an extended time. The findings indicate that perichondrium is a suitable tissue for repair and engineering of articular cartilage.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1666
Author(s):  
Maria V. Shestovskaya ◽  
Svetlana A. Bozhkova ◽  
Julia V. Sopova ◽  
Mikhail G. Khotin ◽  
Mikhail S. Bozhokin

The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.


2021 ◽  
Author(s):  
Weiping Lin ◽  
Zhengmeng Yang ◽  
Liu Shi ◽  
Haixing Wang ◽  
Qi Pan ◽  
...  

Abstract Background: Osteoarthritis (OA) is a chronic joint disease, characterized by articular cartilage degradation, subchondral bone hardening, and inflammation of the whole synovial joint. There is no pharmacological treatment in slowing down OA progression, leading to costly surgical interventions eventually. Cell therapy using chondrocytes or progenitor cells from different sources has been reported in clinical trials for OA management with some success, but outcomes are varied. Peripheral blood derived mesenchymal stem cells (PB-MSCs) are promising cells owing to their easy collection, superior migration, and differentiation potentials. In the current study, we evaluated the effect of intra-articular administration of PB-MSCs on the progression of OA in mice.Methods: C57BL/6J mice (8-10 weeks old male) were subjected to destabilization of the medial meniscus surgeries (DMM) on their right joints following protocols as previously reported. The mice after DMM were randomly treated with saline (vehicle control), PB-MSCs, or adipose tissue derived MSCs (AD-MSCs) (n = 7 per group). The mice treated with sham surgery were regarded as sham controls (n = 7). PB-MSCs and AD-MSCs were harvested and cultured according to previous published protocols, and pre-labeled with BrdU for 48 h before use. PB-MSCs or AD-MSCs (5 × 105 cells/mouse; passage 3~5) were injected into the right knee joints thrice post-surgery (except sham surgery group). The mice were euthanized at 8 weeks post-surgery and knee joint samples were collected for micro-CT and histological examinations.Results: PB-MSCs administration significantly reduced hardening of subchondral bone comparing to vehicle controls. Safranin O staining showed that PB-MSCs treatment ameliorated degeneration of articular cartilage, which is comparable to AD-MSCs treatment. The expression of catabolic marker MMP13 was significantly reduced in articular cartilage of PB-MSCs-treated groups comparing to vehicle controls. Co-expression of BrdU and Sox9 were detected, indicating injected PB-MSCs differentiated towards chondrocytes in situ. Reduced level of IL-6 in the peripheral sera of PB-MSCs- and AD-MSCs-treated mice was also determined. Conclusions: Repetitive administration of PB-MSCs or AD-MSCs halted OA progression through inhibiting cartilage degradation and inflammation. PB-MSCs may become a promising cell source for cartilage tissue repair and alleviation of OA progression.


Joints ◽  
2018 ◽  
Vol 06 (04) ◽  
pp. 246-250
Author(s):  
Antonio Gigante ◽  
Marco Cianforlini ◽  
Luca Farinelli ◽  
Riccardo Girotto ◽  
Alberto Aquili

AbstractFull-thickness articular cartilage defects do not heal spontaneously. Several techniques have been developed to address this issue, but none resulted in the restitutio ad integrum of the articular cartilage. The most frequent sites of chondral lesion in the knee are medial femoral condyle and patella. The patellofemoral lesions are characterized by outcomes that are generally worse than those of tibiofemoral ones. To date, it has been well recognized the chondrogenic potential of rib perichondrium, and costal cartilage grafts have been extensively used in reconstructive surgery. Considering the need to find a gold standard technique to restore articular defect, we developed and here described a new technique to repair cartilage lesions of the knee using autologous costal cartilage graft with its perichondrium. This innovative surgical approach can be used to treat full thickness articular defects using autologous hyaline cartilage, making it possible to cover wide defects. This one step technique is low invasive, not technically demanding with minimal donor site morbidity and it has low costs. The long-term clinical efficacy of the method remains to be evaluated.


2003 ◽  
Vol 07 (03n04) ◽  
pp. 157-181 ◽  
Author(s):  
Craig Willers ◽  
David J. Wood ◽  
Ming H. Zheng

Osteochondral injury occurs predominantly in physically active young adult males. Injury to the articular cartilage and/or subchondral bone may not only cause acute joint disease resulting in osseous intracapsular (synovitis) or extracapsular pain, but may also act to spawn arthritic conditions in later life. Since the 18th century, such injury has proven difficult to treat clinically, and much therapy has been essentially palliative. Past treatments such as abrasion arthroplasty, drilling, microfracture and arthroscopic lavage have been useful in removing articular debris and promoting the formation of the fibrin clot used in most native repair mechanisms. However, the limitation of these techniques is their inability to restore the damaged cartilage and subchondral bone to their normal tissue architecture. Recent developments in tissue engineering have concentrated on the utilization of autologous chondrocyte implantation, biomaterials and growth factors to promote the regeneration of biomechanically superior hyaline articular cartilage. This paper reviews the etiology, repair biology and therapeutic techniques of cartilage and/or osteochondral injury over the previous decades, and attempts to provide insight into interesting new research directions which offer much potential for improved treatment of these troublesome lesions.


Biomaterials ◽  
2006 ◽  
Vol 27 (14) ◽  
pp. 2882-2889 ◽  
Author(s):  
Dirk Barnewitz ◽  
Michaela Endres ◽  
Ina Krüger ◽  
Anja Becker ◽  
Jürgen Zimmermann ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liwei Fu ◽  
Pinxue Li ◽  
Hao Li ◽  
Cangjian Gao ◽  
Zhen Yang ◽  
...  

Tissue engineering (TE) has brought new hope for articular cartilage regeneration, as TE can provide structural and functional substitutes for native tissues. The basic elements of TE involve scaffolds, seeded cells, and biochemical and biomechanical stimuli. However, there are some limitations of TE; what most important is that static cell culture on scaffolds cannot simulate the physiological environment required for the development of natural cartilage. Recently, bioreactors have been used to simulate the physical and mechanical environment during the development of articular cartilage. This review aims to provide an overview of the concepts, categories, and applications of bioreactors for cartilage TE with emphasis on the design of various bioreactor systems.


2021 ◽  
Vol 11 (17) ◽  
pp. 7821
Author(s):  
Angeliki Dimaraki ◽  
Pedro J. Díaz-Payno ◽  
Michelle Minneboo ◽  
Mahdiyeh Nouri-Goushki ◽  
Maryam Hosseini ◽  
...  

The treatment of articular cartilage defects remains a significant clinical challenge. This is partially due to current tissue engineering strategies failing to recapitulate native organization. Articular cartilage is a graded tissue with three layers exhibiting different cell densities: the superficial zone having the highest density and the deep zone having the lowest density. However, the introduction of cell gradients for cartilage tissue engineering, which could promote a more biomimetic environment, has not been widely explored. Here, we aimed to bioprint a scaffold with different zonal cell densities to mimic the organization of articular cartilage. The scaffold was bioprinted using an alginate-based bioink containing human articular chondrocytes. The scaffold design included three cell densities, one per zone: 20 × 106 (superficial), 10 × 106 (middle), and 5 × 106 (deep) cells/mL. The scaffold was cultured in a chondrogenic medium for 25 days and analyzed by live/dead assay and histology. The live/dead analysis showed the ability to generate a zonal cell density with high viability. Histological analysis revealed a smooth transition between the zones in terms of cell distribution and a higher sulphated glycosaminoglycan deposition in the highest cell density zone. These findings pave the way toward bioprinting complex zonal cartilage scaffolds as single units, thereby advancing the translation of cartilage tissue engineering into clinical practice.


Sign in / Sign up

Export Citation Format

Share Document