scholarly journals THE EFFECT OF NONLINEAR DAMPING TO A DYNAMICAL SYSTEM WITH CENTER PHASE PORTAIT

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Kus Prihantoso Kurniawan ◽  
Husna Arifah

This paper discusses the effect of nonlinear damping to a 2-dimesional system that has center phase portrait. The phase portraits of the damped system are drawn for 3 different values of parameter. These phase portraits stand as the numerical proof of phase portrait change. To prove the change analiticaly, we use the theorem that guarantee the existence of periodic solution. The result shows that nonlinear damping changes the phase portrait topologically. It means that the system undergoes a generalized Hopf bifurcation. Keywords: generalized Hopf bifurcation, center phase portrait, periodic solution

2021 ◽  
Vol 31 (08) ◽  
pp. 2130022
Author(s):  
Miaorong Zhang ◽  
Xiaofang Zhang ◽  
Qinsheng Bi

This paper focuses on the influence of two scales in the frequency domain on the behaviors of a typical dynamical system with a double Hopf bifurcation. By introducing an external periodic excitation to the normal form of the vector field with double Hopf bifurcation at the origin and taking the exciting frequency far less than the natural frequency, a theoretical model with two scales in the frequency domain is established. Regarding the whole exciting term as a slow-varying parameter leads to a generalized autonomous system, in which the equilibrium branches and their bifurcations with the variation of the slow-varying parameter can be derived. With the increase of the exciting amplitude, different types of bifurcations may be involved in the generalized autonomous system, resulting in several qualitatively different forms of bursting attractors, the mechanism of which is presented by overlapping the transformed phase portraits and the bifurcations of the equilibrium branches. It is found that the single mode 2D torus may evolve to the bursting attractors with mixed modes, in which the trajectory alternates between the single mode oscillations and the mixed mode oscillations. Furthermore, the transitions between the quiescent states and the spiking states may not occur exactly at the bifurcation points because of the slow passage effect, while Hopf bifurcations may cause different forms of repetitive spiking oscillations.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Junning Cai ◽  
Minzhi Wei ◽  
Liping He

In this paper, we consider the KP-MEW(3,2) equation by the bifurcation theory of dynamical systems when integral constant is considered. The corresponding traveling wave system is a singular planar dynamical system with one singular straight line. The phase portrait for c < 0 , 0 < c < 1 , and c > 1 is drawn. Exact parametric representations of periodic peakon solutions and smooth periodic solution are presented.


2021 ◽  
Vol 31 (06) ◽  
pp. 2150089
Author(s):  
Biruk Tafesse Mulugeta ◽  
Liping Yu ◽  
Jingli Ren

In this paper, a three-dimensional one-prey and two-predators model, with additional food and harvesting in the presence of toxicity is proposed. Additional food is being provided to one predator. The dynamics and bifurcations of the system are investigated using center manifold theorem, normal form theory and Sotomayor’s theorem. It is proved that the system undergoes transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, generalized Hopf bifurcation, Bogdanov–Takens bifurcation and cusp bifurcation with respect to different parameters. Bifurcation diagrams of the system with respect to toxic effect and harvesting effect are illustrated. The phase portraits and solution curves are also presented to verify the dynamic behavior. The results show that the combined effect of the factors has the power of transforming simple ecosystems into complex ecosystems.


Author(s):  
Lilija Naiwert ◽  
Karlheinz Spindler

AbstractWe discuss two problems which grew out of an introductory differential equations class but were solved only later, each after having been put into a different context. First, how do you find a rather complicated Lyapunov function with your bare hands, without using a fully developed theory (while reconstructing the steps leading up to such a theory)? Second, how can you obtain a global picture of the phase-portrait of a dynamical system (thereby invoking ideas from projective geometry)? Since classroom experiences played an important part in the making of this paper, didactical aspects will also be discussed.


2022 ◽  
Author(s):  
Sachin Kumar ◽  
Nikita Mann ◽  
Harsha Kharbanda

Abstract Nonlinear evolution equations (NLEEs) are extensively used to establish the elementary propositions of natural circumstances. In this work, we study the Konopelchenko-Dubrovsky (KD) equation which depicts non-linear waves in mathematical physics with weak dispersion. The considered model is investigated using the combination of generalized exponential rational function (GERF) method and dynamical system method. The GERF method is utilized to generate closedform invariant solutions to the (2+1)-dimensional KD model in terms of trigonometric, hyperbolic, and exponential forms with the assistance of symbolic computations. Moreover, three-dimensional graphics are displayed to depict the behavior of obtained solitary wave solutions. The model is observed to have single and multiple soliton profiles, kink-wave profiles, and periodic oscillating nonlinear waves. These generated solutions have never been published in the literature. All the newly generated soliton solutions are checked by putting them back into the associated system with the soft computation via Wolfram Mathematica. Moreover, the system is converted into a planer dynamical system using a certain transformation and the analysis of bifurcation is examined. Furthermore, the quasi-periodic solution is investigated numerically for the perturbed system by inserting definite periodic forces into the considered model. With regard to the parameter of the perturbed model, two-dimensional and three-dimensional phase portraits are plotted.


Author(s):  
Imran Akhtar ◽  
Ali H. Nayfeh

Control of fluid-structure interaction is of practical importance from the perspective of wake modification and reduction of vortex-induced vibrations (VIVs). The aim of this study is to design a control to suppress vortex shedding. We perform a two-dimensional simulation of the flow past a circular cylinder using a parallel Computational Fluid Dynamics (CFD) solver. We record the velocity and pressure fields over a shedding cycle and compute the proper orthogonal decomposition (POD) modes of the divergence-free velocity and pressure, respectively. The Navier–Stokes equations are projected onto these POD modes to reduce the dynamical system to a set of ordinary-differential equations (ODEs). This dynamical system exhibits a limit cycle with negative linear damping and positive nonlinear damping. The reduced-order model is then modified by placing a pair of suction actuators and applying a control strategy using a control function method. We use the pressure POD mode distribution on the cylinder surface to optimally locate the actuators. We design a controller based on the linearized system and make it positively damped using pole-placement technique. The control-input settles to a constant value, suggesting constant suction through the actuators. We validate the results using CFD simulations in an open-loop setting and observe suppression of the hydrodynamic forces acting on the cylinder.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jing Hui ◽  
Jian-Hua Pang ◽  
Dong-Rong Lin

We consider an epidemic-species hybrid dynamical system. The disease is spread among the prey only and the infected prey can reproduce virus. The predator only eats the infected prey. Mathematical analyses are given for the system with regard to the existence of equilibria, local stability, Hopf bifurcation, and the orbital stability of the Hopf bifurcating limit cycle. We further analyse the system under impulsive releasing of virus and predator.


Sign in / Sign up

Export Citation Format

Share Document