scholarly journals Human-robot Interaction in Collaborative Robotic Systems

2021 ◽  
Vol 24 (4) ◽  
pp. 180-199
Author(s):  
R. R. Galin ◽  
V. V. Serebrennyj ◽  
G. K. Tevyashov ◽  
A. A. Shiroky

Purpose or research is to find solvable tasks for increasing the effectiveness of collaborative interaction between people and robots in ergatic robotic systems, or, in other words, in collaborative robotic systems. Methods. A comprehensive analysis of works published in highly rated peer-reviewed open-access scientific publications was carried out to achieve this goal. Main terms and concepts of collaborative robotics are described in § 1 and their current understanding in the research community is also described. The structure of workspaces in interaction zone of a person and robot is described. The criteria for assigning robot to the class of collaborative ones are also described. The criteria for safe interaction of a person and robot in a single workspace is described in § 2. Various grounds for classifying human-robot interactions in collaborative RTAs are described in § 3. Results. A significant part of published works about collaborative robotics is devoted to the organization of safe man and robot interaction. Less attention is paid to the effectiveness improvement of such interaction. An up-to-date task in the problem of efficiency improvement of collaborative robotic systems is the identification of tasks that have already been solved in other areas - in particular, in the field of organizational systems management. The possibility of using the term "team" for collaborative robots in a collaborative PTC is stated in § 4. A formal problem setting of optimal distribution in teamwork of collaborative robots, similar to the problem of heterogeneous team formation in the theory of organizational systems management is proposed in § 5. Conclusions. Proposed task setting of optimal distribution of works in collaborative robots’ team shows possibility of using results obtained in group of mathematical models of commands formation and functioning for control of collaborative robotic systems in order to increase efficiency of people and robots interaction. It is prospectively to continue the search for adapting models and governance mechanisms to the theory of organizational system management and integrated activities methodology.

2020 ◽  
Vol 110 (03) ◽  
pp. 146-150
Author(s):  
Marco Baumgartner ◽  
Tobias Kopp ◽  
Steffen Kinkel

Die industrielle Mensch-Roboter-Interaktion (MRI) eignet sich nach Einschätzung von Experten vor allem für die spezifischen Produktionsbedingungen kleiner und mittlerer Unternehmen (KMU). Nichtsdestotrotz finden sich MRI-Lösungen derzeit vorwiegend in Großunternehmen. Eine empirische Befragung von 81 Vertretern deutscher Industrieunternehmen legt die Vermutung nahe, dass es sich hierbei nicht nur um ein Umsetzungsdefizit handelt. Vielmehr scheinen KMU die Potenziale von MRI-Lösungen systematisch zu unterschätzen.   According to experts, industrial human-robot interaction (HRI) is particularly suitable for the specific production conditions of small and medium-sized enterprises (SMEs). Nevertheless, HRI solutions are currently mainly found in large companies. An empirical survey of 81 representatives of German industrial companies suggests that this is not just due to barriers in implementing collaborative robots. On the contrary, SMEs seem to systematically underestimate the potential of HRI solutions.


Author(s):  
Yiwei Liu ◽  
Shipeng Cui ◽  
Yongjun Sun

AbstractThe safety of human-robot interaction is an essential requirement for designing collaborative robotics. Thus, this paper aims to design a novel variable stiffness actuator (VSA) that can provide safer physical human-robot interaction for collaborative robotics. VSA follows the idea of modular design, mainly including a variable stiffness module and a drive module. The variable stiffness module transmits the motion from the drive module in a roundabout manner, making the modularization of VSA possible. As the key component of the variable stiffness module, a stiffness adjustment mechanism with a symmetrical structure is applied to change the positions of a pair of pivots in two levers linearly and simultaneously, which can eliminate the additional bending moment caused by the asymmetric structure. The design of the double-deck grooves in the lever allows the pivot to move freely in the groove, avoiding the geometric constraint between the parts. Consequently, the VSA stiffness can change from zero to infinity as the pivot moves from one end of the groove to the other. To facilitate building a manipulator in the future, an expandable electrical system with a distributed structure is also proposed. Stiffness calibration and control experiments are performed to evaluate the physical performance of the designed VSA. Experiment results show that the VSA stiffness is close to the theoretical design stiffness. Furthermore, the VSA with a proportional-derivative feedback plus feedforward controller exhibits a fast response for stiffness regulation and a good performance for position tracking.


2021 ◽  
Author(s):  
Andrew R. Barkan ◽  
Akhil Padmanabha ◽  
Sala R. Tiemann ◽  
Albert Lee ◽  
Matthew P. Kanter ◽  
...  

2011 ◽  
Vol 23 (3) ◽  
pp. 313-325 ◽  
Author(s):  
S Davis ◽  
Darwin G Caldwell

As the operation of robotic systems moves away from solely manufacturing environments to arenas where they must operate alongside humans, so the essential characteristics of their design has transformed. A move from traditional robot designs to more inherently safe concepts is required. Studying biological systems to determine how they achieve safe interactions is one approach being used. This then seeks to mimic the ingredients that make this interaction safe in robotics systems. This is often achieved through softness both in terms of a soft fleshy external covering and through motor systems that introduce joint compliance for softer physical Human-Robot Interaction (pHRI). This has led to the development of new actuators with performance characteristics that at least on a macroscopic level try to emulate the function of organic muscle. One of the most promising among these is the pneumatic Muscle Actuator (pMA). However, as with organic muscle, these soft actuators are more susceptible to damage than many traditional actuators. Whilst organic muscle can regenerate and recover, artificial systems do not possess this ability. This article analyzes how organic muscle is able to operate even after extreme trauma and shows how functionally similar techniques can be used with pMAs.


Author(s):  
Scott A. Green ◽  
Mark Billinghurst ◽  
XiaoQi Chen ◽  
J. Geoffrey Chase

Future space exploration will demand the cultivation of human-robotic systems, however, little attention has been paid to the development of human-robot teams. Current methods for autonomous plan creation are often complex and difficult to use. So a system is needed that enables humans and robotic systems to naturally and effectively collaborate. Effective collaboration takes place when the participants are able to communicate in a natural and effective manner. Grounding, the common understanding between conversational participants, shared spatial referencing and situational awareness, are crucial components of communication and collaboration. This paper briefly reviews the fields of human-robot interaction and Augmented Reality (AR), the overlaying of computer graphics onto the real worldview. The strengths of AR are discussed and how they might be used for more effective human-robot collaboration is described. Then a description of an architecture that we have developed is given that uses AR as a means for real time understanding of the shared spatial scene. This architecture enables grounding and enhances situational awareness, thus laying the necessary groundwork for natural and effective human-robot collaboration.


2019 ◽  
Vol 31 ◽  
pp. 26-31 ◽  
Author(s):  
Henning Oberc ◽  
Christopher Prinz ◽  
Paul Glogowski ◽  
Kai Lemmerz ◽  
Bernd Kuhlenkötter

Author(s):  
Christos Papadopoulos ◽  
Ioannis Mariolis ◽  
Angeliki Topalidou-Kyniazopoulou ◽  
Grigorios Piperagkas ◽  
Dimosthenis Ioannidis ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yueh-Hsuan Weng ◽  
Yasuhisa Hirata

Recent developments have shown that not only are AI and robotics growing more sophisticated, but also these fields are evolving together. The applications that emerge from this trend will break current limitations and ensure that robotic decision making and functionality are more autonomous, connected, and interactive in a way which will support people in their daily lives. However, in areas such as healthcare robotics, legal and ethical concerns will arise as increasingly advanced intelligence functions are incorporated into robotic systems. Using a case study, this paper proposes a unique design-centered approach which tackles the issue of data protection and privacy risk in human-robot interaction.


Sign in / Sign up

Export Citation Format

Share Document