scholarly journals Инфракрасные (850 нм) светодиоды с множественными квантовыми ямами InGaAs и "тыльным" отражателем

Author(s):  
А.В. Малевская ◽  
Н.А. Калюжный ◽  
Д.А. Малевский ◽  
С.А. Минтаиров ◽  
А.М. Надточий ◽  
...  

Investigation of IR light emitting diodes (wavelength 850 nm) based on heterostructures AlGaAs/GaAs with multiple quantum wells InGaAs in the region generating radiation, grown by the MOCVD technique, has been carried out. Post-growth technologies for removing the growth substrate GaAs and for transfer the heterostructure on an alien carrier with an optical reflector have been developed. Technological regimes for fabricating the reflector has been optimized and the increase of the IR radiation reflection coefficient up to 92-93% has been achieved. Light-emitting diodes with the external quantum efficiency of 28.5% have been fabricated.

Author(s):  
А.В. Малевская ◽  
Н.А. Калюжный ◽  
С.А. Минтаиров ◽  
Р.А. Салий ◽  
Д.А. Малевский ◽  
...  

Developed and investigated are IR (850nm) light-emitting diodes based on AlGaAs/Ga(In)As heterostructures grown by the MOC-hydride epitaxy technique with multiple quantum wells in the active region and with a double optical reflector consisted of a multilayer Al0.9Ga0.1As/Al0.1Ga0.9As Bragg heterostructure and an Ag mirror layer. Light-emitting diodes with the external quantum efficiency (EQE) of 37.5% at current densities greater than 10A/cm2 have been fabricated.


2008 ◽  
Vol 1 ◽  
pp. 021101 ◽  
Author(s):  
Lai Wang ◽  
Jiaxing Wang ◽  
Hongtao Li ◽  
Guangyi Xi ◽  
Yang Jiang ◽  
...  

2018 ◽  
Vol 7 (3) ◽  
pp. 1801575 ◽  
Author(s):  
Maotao Yu ◽  
Chang Yi ◽  
Nana Wang ◽  
Liangdong Zhang ◽  
Renmeng Zou ◽  
...  

2014 ◽  
Vol 115 (8) ◽  
pp. 083112 ◽  
Author(s):  
Zhi Li ◽  
Junjie Kang ◽  
Bo Wei Wang ◽  
Hongjian Li ◽  
Yu Hsiang Weng ◽  
...  

2019 ◽  
Author(s):  
Baiquan Liu ◽  
Yemliha Altintas ◽  
Lin Wang ◽  
Sushant Shendre ◽  
Manoj Sharma ◽  
...  

<p> Colloidal quantum wells (CQWs) are regarded as a new, highly promising class of optoelectronic materials thanks to their unique excitonic characteristics of high extinction coefficient and ultranarrow emission bandwidth. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind compared with other types of LEDs (e.g., organic LEDs, colloidal quantum-dot LEDs, and perovskite LEDs). Herein, for the first time, the authors show high-efficiency CQW-LEDs reaching close to the theoretical limit. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition- and device- engineering, the CQW-LEDs using CdSe/Cd<sub>0.25</sub>Zn<sub>0.75</sub>S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23,490 cd m<sup>-2</sup>, extremely saturated red color with the Commission Internationale de L’Eclairage coordinates of (0.715, 0.283) and stable emission are obtained. The findings indicate that HIS grown CQWs enable high-performance solution-processed LEDs, which may pave the path for CQW-based display and lighting technologies.</p>


2015 ◽  
Vol 23 (7) ◽  
pp. A337 ◽  
Author(s):  
Hung-Ming Chang ◽  
Wei-Chih Lai ◽  
Wei-Shou Chen ◽  
Shoou-Jinn Chang

2020 ◽  
Vol 8 (3) ◽  
pp. 883-888 ◽  
Author(s):  
Yuan Li ◽  
Zhiheng Xing ◽  
Yulin Zheng ◽  
Xin Tang ◽  
Wentong Xie ◽  
...  

High quantum efficiency LEDs with InGaN/GaN/AlGaN/GaN MQWs have been demonstrated. The proposed GaN interlayer barrier can not only increase the concentration and the spatial overlap of carriers, but also improve the quality of the MQWs.


Author(s):  
A. E. Yunovich ◽  
V. E. Kudryashov ◽  
A. N. Turkin ◽  
A. Kovalev ◽  
F. Manyakhin

Luminescence spectra of Light Emitting Diodes (LEDs) with Multiple Quantum Wells (MQWs) were studied at currents J = 0.15 μA - 150 mA. A high quantum efficiency at low J is caused by a low probability of the tunnel current J (which is maximum at Jm ≈ 0.5-1.0 mA). J(V) curves were measured in the range J= 10−12-10−1 A; at J > 10−3A they may be approximated by a sum of four parts: V= φk+ mkT·[ln(J/J0)+(J/J1)0.5] + J·Rs. The part V ~ (J/J1)0.5is the evidence of a double-injection into i-layers near MQWs. Their presence is confirmed by capacitance measurements. An overflow of carriers through the MQW causes a lower quantum efficiency at high J. A model of a 2D-density of states with exponential tails fits the spectra. The value of T in the active layer was estimated. A new band was detected at high J; it can be caused by non-uniformity of In content in MQWs.


Sign in / Sign up

Export Citation Format

Share Document