scholarly journals Высокотемпературная диффузия акцепторной примеси Ве в AlN

Author(s):  
О.П. Казарова ◽  
С.С. Нагалюк ◽  
В.А. Солтамов ◽  
М.В. Музафарова ◽  
Е.Н. Мохов

The high-temperature diffusion of an acceptor impurity of beryllium (Be) into bulk single-crystal aluminum nitride (AlN) has been studied. It is shown that the introduction of Be leads to the appearance of green luminescence of AlN, which is stable at room temperature and is observed over the entire thickness of the sample. It was shown by the method of luminescence analysis that the Be diffusion process is most efficiently realized in the temperature range from 1800°C to 2100°C and is characterized by extremely high diffusion coefficients D = 10-7 cm2/s and 10-6 cm2/s, respectively. It is shown that a prolonged diffusion process (t ≥ 1 hour) at a temperature of 2100°C leads to concentration quenching of the luminescence of near-surface AlN layers with a thickness of ≈ 80 μm, which makes it possible to estimate the concentration of beryllium impurities in the near-surface layer on the order of 10E19 cm-3.

1989 ◽  
Vol 163 ◽  
Author(s):  
A. Wall ◽  
A. Raisanen ◽  
G. Haugstad ◽  
A. Franciosi

AbstractDeposition of Mn at room temperature onto atomically clean CdTe(110) surfaces yields atomic interdiffusion for metal coverages <3 angstroms with Mn atoms occupying cation sites within the surface and near-surface layers of the semiconductor. Synchrotron radiation photoemission studies with variable photoelectron escape depth indicate the formation of a relatively homogeneous semiconductor surface alloy. The highest Mn concentration observed in the alloy exceeds those obtainable with bulk crystal growth methods.


2003 ◽  
Vol 775 ◽  
Author(s):  
Tsuyoshi Kijima ◽  
Kenichi Iwanaga ◽  
Tomomi Hamasuna ◽  
Shinji Mohri ◽  
Mitsunori Yada ◽  
...  

AbstractEuropium-doped hexagonal-mesostructured and nanotubular yttrium oxides templated by dodecylsulfate species as well as surfactant free bulk oxides were synthesized by the homogeneous precipitation method. All the as grown nanostructured or bulk materials with amorphous or poorly crystalline frameworks showed weak luminescence bands at room temperature. On calcination at 1000°C these materials were converted into highly crystalline yttrium oxides, resulting in a total increase in intensity of all the bands by one order of magnitude. In the hexagonal-mesostructured system, the main band due to the 5D0-7F2 transition for the calcined phases showed a sharp but asymmetrical multiplet splitting indicating multiple Eu sites. Concentration quenching was found at a Eu content of 3 mol% or above for these phases. In contrast, the main emission for the calcined solids in the nanotubular system occurred as poorly resolved broad band and the intensity of the main band at higher Eu content was significantly enhanced compared with those for the other two systems.


2019 ◽  
Author(s):  
Young-Kwang Jung ◽  
Joaquin Calbo ◽  
Ji-Sang Park ◽  
Lucy D. Wahlley ◽  
Sunghyun Kim ◽  
...  

Cs<sub>4</sub>PbBr<sub>6 </sub>is a member of the halide perovskite family that is built from isolated (zero-dimensional) PbBr<sub>6</sub><sup>4-</sup> octahedra with Cs<sup>+</sup> counter ions. The material exhibits anomalous optoelectronic properties: optical absorption and weak emission in the deep ultraviolet (310 - 375 nm) with efficient luminescence in the green region (~ 540 nm). Several hypotheses have been proposed to explain the giant Stokes shift including: (i) phase impurities; (ii) self-trapped exciton; (iii) defect emission. We explore, using first-principles theory and self-consistent Fermi level analysis, the unusual defect chemistry and physics of Cs<sub>4</sub>PbBr<sub>6</sub>. We find a heavily compensated system where the room-temperature carrier concentrations (< 10<sup>9</sup> cm<sup>-3</sup>) are more than one million times lower than the defect concentrations. We show that the low-energy Br-on-Cs antisite results in the formation of a polybromide (Br<sub>3</sub>) species that can exist in a range of charge states. We further demonstrate from excited-state calculations that tribromide moieties are photoresponsive and can contribute to the observed green luminescence. Photoactivity of polyhalide molecules is expected to be present in other halide perovskite-related compounds where they can influence light absorption and emission. <br>


Author(s):  
Young-Kwang Jung ◽  
Joaquin Calbo ◽  
Ji-Sang Park ◽  
Lucy D. Wahlley ◽  
Sunghyun Kim ◽  
...  

Cs<sub>4</sub>PbBr<sub>6 </sub>is a member of the halide perovskite family that is built from isolated (zero-dimensional) PbBr<sub>6</sub><sup>4-</sup> octahedra with Cs<sup>+</sup> counter ions. The material exhibits anomalous optoelectronic properties: optical absorption and weak emission in the deep ultraviolet (310 - 375 nm) with efficient luminescence in the green region (~ 540 nm). Several hypotheses have been proposed to explain the giant Stokes shift including: (i) phase impurities; (ii) self-trapped exciton; (iii) defect emission. We explore, using first-principles theory and self-consistent Fermi level analysis, the unusual defect chemistry and physics of Cs<sub>4</sub>PbBr<sub>6</sub>. We find a heavily compensated system where the room-temperature carrier concentrations (< 10<sup>9</sup> cm<sup>-3</sup>) are more than one million times lower than the defect concentrations. We show that the low-energy Br-on-Cs antisite results in the formation of a polybromide (Br<sub>3</sub>) species that can exist in a range of charge states. We further demonstrate from excited-state calculations that tribromide moieties are photoresponsive and can contribute to the observed green luminescence. Photoactivity of polyhalide molecules is expected to be present in other halide perovskite-related compounds where they can influence light absorption and emission. <br>


2007 ◽  
Vol 131-133 ◽  
pp. 425-430 ◽  
Author(s):  
Anis M. Saad ◽  
Oleg Velichko ◽  
Yu P. Shaman ◽  
Adam Barcz ◽  
Andrzej Misiuk ◽  
...  

The silicon substrates were hydrogenated at approximately room temperature and hydrogen concentration profiles vs. depth have been measured by SIMS. Czochralski grown (CZ) wafers, both n- and p-type conductivity, were used in the experiments under consideration. For analysis of hydrogen transport processes and quasichemical reactions the model of hydrogen atoms diffusion and quasichemical reactions is proposed and the set of equations is obtained. The developed model takes into account the formation of bound hydrogen in the near surface region, hydrogen transport as a result of diffusion of hydrogen molecules 2 H , diffusion of metastable complexes * 2 H and diffusion of nonequilibrium hydrogen atoms. Interaction of 2 H with oxygen atoms and formation of immobile complexes “oxygen atom - hydrogen molecule” (O - H2 ) is also taken into account to explain the hydrogen concentration profiles in the substrates of n-type conductivity. The computer simulation based on the proposed equations has shown a good agreement of the calculated hydrogen profiles with the experimental data and has allowed receiving a value of the hydrogen molecules diffusivity at room temperature.


1999 ◽  
Vol 595 ◽  
Author(s):  
U. Hömmerich ◽  
J. T. Seo ◽  
J. D. MacKenzie ◽  
C. R. Abernathy ◽  
R. Birkhahn ◽  
...  

AbstractWe report on the luminescence properties of Er doped GaN grown prepared by metalorganic molecular beam epitaxy (MOMBE) and solid-source molecular beam epitaxy (SSMBE) on Si substrates. Both types of samples emitted characteristic 1.54 µm PL resulting from the intra-4f Er3+ transition 4I13/2→4I15/2. Under below-gap excitation the samples exhibited very similar 1.54 µm PL intensities. On the contrary, under above-gap excitation GaN: Er (SSMBE) showed ∼80 times more intense 1.54 µm PL than GaN: Er (MOMBE). In addition, GaN: Er (SSMBE) also emitted intense green luminescence at 537 nm and 558 nm, which was not observed from GaN: Er (MOMBE). The average lifetime of the green PL was determined to be 10.8 µs at 15 K and 5.5 µs at room temperature. A preliminary lifetime analysis suggests that the decrease in lifetime is mainly due to the strong thermalization between the 2H11/2 and 4S3/2 excited states. Nonradiative decay processes are expected to only weakly affect the green luminescence.


2017 ◽  
Vol 373 ◽  
pp. 104-107
Author(s):  
Ling Wang ◽  
Ai Hong Deng ◽  
Kang Wang ◽  
Yong Wang ◽  
Xiao Bo Lu ◽  
...  

W/Cu multilayer nanofilms and pure W nanofilms were prepared in pure Ar and He/Ar mixing atmosphere by radio frequency magnetron sputtering method. The defect evolution of the samples was characterized by Doppler broadening positron annihilation spectroscopy (DB-PAS).The results show that plenty of defects can be produced by introducing helium (He) into W/Cu multilayer nanofilms. With the natural storage time increasing, the helium located in the near surface of W/Cu multilayer nanofilm would be released gradually and induce the coalescence of the helium related defects due to the diffusion of the helium and defects. In addition, the pure W nanofilms were irradiated by 30 keV helium ions and 40 keV hydrogen (H) ions in sequence at room temperature. From the DB-PAS analysis, it can be shown that a large number of vacancy-type defects are produced due to the He and/or H irradiation. H ions would be trapped by He related defects and produced He-H-V complexes.


Sign in / Sign up

Export Citation Format

Share Document