scholarly journals Исследование пиролизата фталоцианина Fe методами мессбауэровской спектроскопии и просвечивающей электронной микроскопии

2018 ◽  
Vol 60 (5) ◽  
pp. 1018 ◽  
Author(s):  
В.С. Козлов ◽  
В.Г. Семенов ◽  
К.Г. Каратеева ◽  
В.Ю. Байрамуков

AbstractA pyrolyzate of iron phthalocyanine is studied by Mössbauer spectroscopy and transmission electron microscopy. The phase composition and magnetic state were found for pyrolysis products (α-Fe, γ-Fe, Fe_3C, and magnetite). Morphological features of carbon and iron-containing phases (metal particles of various shapes and sizes, as well as carbon nanotubes, carbon hollow nanopolihedra, and nongraphitized carbon) are determined. The morphology and structure of iron phthalocyanine pyrolyzates and diphthalocyanines of rare-earth elements are analyzed.

2011 ◽  
Vol 470 ◽  
pp. 171-174
Author(s):  
Hideo Kohno ◽  
Takafumi Nogami

We report a new route to fabricating carbon nanotubes and nanotube interconnects. Insulating Si nanochains covered with hydrocarbon, which are a kind of Si nanowire, can be transformed into distorted nanotubes of carbon by Joule heating. Transmission electron microscopy observations of the transformation reveal that first a surface carbon shell is formed, and then oxide evaporates by Joule heating forming a nanotube.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 669 ◽  
Author(s):  
Mariachiara Trapani ◽  
Antonino Mazzaglia ◽  
Anna Piperno ◽  
Annalaura Cordaro ◽  
Roberto Zagami ◽  
...  

The ability of multiwalled carbon nanotubes (MWCNTs) covalently functionalized with polyamine chains of different length (ethylenediamine, EDA and tetraethylenepentamine, EPA) to induce the J-aggregation of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated in different experimental conditions. Under mild acidic conditions, protonated amino groups allow for the assembly by electrostatic interaction with the diacid form of TPPS, leading to hybrid nanomaterials. The presence of only one pendant amino group for a chain in EDA does not lead to any aggregation, whereas EPA (with four amine groups for chain) is effective in inducing J-aggregation using different mixing protocols. These nanohybrids have been characterized through UV/Vis extinction, fluorescence emission, resonance light scattering and circular dichroism spectroscopy. Their morphology and chemical composition have been elucidated through transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). TEM and STEM analysis evidence single or bundles of MWCNTs in contact with TPPS J-aggregates nanotubes. The nanohybrids are quite stable for days, even in aqueous solutions mimicking physiological medium (NaCl 0.15 M). This property, together with their peculiar optical features in the therapeutic window of visible spectrum, make them potentially useful for biomedical applications.


2011 ◽  
Vol 15 ◽  
pp. 51-56 ◽  
Author(s):  
Xin Wang ◽  
Ya Yu Wang ◽  
Wei Tao Zheng ◽  
Zan Wang

Nitrogen-doped carbon nanotubes (N-CNTs) were synthesized using air as the nitrogen carrier gas and CH4 as the carbon source by plasma-enhanced chemical vapor deposition over a thin catalyst film of Fe50Ni50. Transmission electron microscopy and high resolution transmission electron microscopy measurements have indicated that the N-CNTs grew with a tip-type growth mode. When H2 was added to the CH4/air plasmas during the N-CNTs growth stage, it was found that Fe/Ni oxide nanowire was filled into the nanotube. However, without adding H2 in the CH4/air mixture plasma, only metal oxide nanoparticle was found on the tip of the N-CNT.


2009 ◽  
Vol 66 ◽  
pp. 171-174
Author(s):  
Zhao Deng ◽  
Ying Dai ◽  
Wen Chen

Single-crystalline BaTiO3 nanoparticles and BaCO3 nanowires were synthesized respectively through the use of a reverse micelle as a medium in the same Oleic acid/n-octane/H2O system, by changing the H2O2 dosage. Both the phase composition and the morphology can be controled. The samples derived were characterized with X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The formation mechanism has been fully discussed.


Sign in / Sign up

Export Citation Format

Share Document