scholarly journals Капиллярная неустойчивость цилиндрической струи феррожидкости, находящейся в однородном продольном магнитном поле

2020 ◽  
Vol 90 (5) ◽  
pp. 720
Author(s):  
В.М. Коровин

In this article a ferrofluid jet located inside a solenoid is considered. The jet is modeled by a cylindrical volume of incompressible inviscid fluid moving at a constant velocity parallel to the axis of the cylinder. The axes of the jet and the solenoid coincide. The variation of the strength of the magnetic field generated by the solenoid is allowed from very small to experimentally achievable maximal values. We investigate the influence of the magnetic forces on the growth rate and the wavelength of the most rapidly growing perturbations of the jet surface shape.

1993 ◽  
Vol 157 ◽  
pp. 415-419
Author(s):  
D. Breitschwerdt ◽  
H.J. Völk ◽  
V. Ptuskin ◽  
V. Zirakashvili

It is argued that the description of the magnetic field in halos of galaxies should take into account its dynamical coupling to the other major components of the interstellar medium, namely thermal plasma and cosmic rays (CR's). It is then inevitable to have some loss of gas and CR's (galactic wind) provided that there exist some “open” magnetic field lines, facilitating their escape, and a sufficient level of self-generated waves which couple the particles to the gas. We discuss qualitatively the topology of the magnetic field in the halo and show how galactic rotation and magnetic forces can be included in such an outflow picture.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


1970 ◽  
Vol 25 (9) ◽  
pp. 1020-1023 ◽  
Author(s):  
Wolfram Thiemann ◽  
Erich Wagner

The influence of strong homogeneous magnetic fields in the range of 5000 to 8000 Gauss on the growth of Saccharomyces cerevisiae and Micrococcus denitrificans was studied. In the case of yeast growing under nearly anaerobic conditions an inhibition of growth rate was observed in the beginning of incubaton while some hours later the growth accelerated and surpassed the control. M. denitrificans on the other hand grew with the same rate as the controls during the first 2 - 3 hours of experiment; thereafter the magnetic field resulted in a significant acceleration of growth rate measured by a 5.8 to 13.3% increase of oxygen consumption after 5 - 6 hours run of experiment. Until now only inhibition of bacterial growths by magnetic fields is reported elsewhere in the literature.


1971 ◽  
Vol 5 (3) ◽  
pp. 467-474 ◽  
Author(s):  
B. Buti ◽  
G. S. Lakhina

Waves, propagating transverse to the direction of the streaming of a plasma in the presence of a uniform external magnetic field, are unstable if the streaming exceeds a certain minimum value. The magnetic field reduces the growth rate of this instability, and also increases the value of the minimum streaming velocity, above which the system is unstable. The thermal motions in the plasma, however, tend to stabilize the system if the magnetic field is weak (i.e. , Ω being the electron cyclotron frequency, k the characteristic wave-number, and Vt the thermal velocity); but, in case of strong magnetic field (i.e. ), they increase the growth rate, provided (ωp being the electron plasma frequency).


2000 ◽  
Vol 18 (4) ◽  
pp. 601-610 ◽  
Author(s):  
STANLEY HUMPHRIES ◽  
JOHN PETILLO

Beam-generated magnetic fields strongly influence the behavior of relativistic electron guns. Existing methods used in ray-tracing codes have limited accuracy and may not correctly represent nonlaminar beams. We describe a technique for the magnetic field calculation in a two-dimensional code based on the assignment of particle currents to the faces of elements in the mesh used for the electrostatic calculation. The balanced calculation of electric and magnetic forces in the same iteration cycle reduces the possibility of numerical filamentation instabilities. With simple rules of assignment on boundary faces, the method also handles field contributions of electrode currents. Several benchmark calculations performed on conformal meshes illustrate the versatility of the technique.


1984 ◽  
Vol 39 (10) ◽  
pp. 939-944 ◽  
Author(s):  
R. K. Chhajlani ◽  
R. K. Sanghvi ◽  
P. Purohit

Abstract The hydromagnetric Rayleigh-Taylor instability of a composite medium has been studied in the presence of suspended particles for an exponentially varying density distribution. The prevalent horizontal magnetic field and viscosity of the medium are assumed to be variable. The dispersion relation is derived for such a medium. It is found that the stability criterion is independent of both viscosity and suspended particles. The system can be stabilized for an appropriate value of the magnetic field. It is found that the suspended particles can suppress as well as enhance the growth rate of the instability in certain regions. The growth rates are obtained for a viscid medium with the inclusion of suspended particles and without it. It has been shown analytically that the growth rate is modified by the inclusion of the relaxation frequency parameter of the suspended particles.


2020 ◽  
Vol 493 (3) ◽  
pp. 4400-4408
Author(s):  
Itzhak Fouxon ◽  
Michael Mond

ABSTRACT We study the growth of small fluctuations of magnetic field in supersonic turbulence, the small-scale dynamo. The growth is due to the smallest and fastest turbulent eddies above the resistive scale. We observe that for supersonic turbulence these eddies are localized below the sonic scale ls, defined as the scale where the typical velocity of the turbulent eddies equals the speed of sound, and are therefore effectively incompressible. All previous studies have ignored the existence of the sonic scale and consequently treated the entire inertial range as made up of compressible eddies. However, at large Mach numbers ls is much smaller than the integral scale of the turbulence so the fastest growing mode of the magnetic field belongs to small-scale incompressible turbulence. We determine this mode and the associated growth rate numerically with the aid of a white noise in time model of turbulence whose approximate validity for the description of the Navier–Stokes turbulence is explained. For that purpose, we introduce a new non-dimensional number Rsm that we name the magnetosonic Reynolds number that describes the division of the magnetic field amplification range between small-scale incompressible eddies and large-scale supersonic ones. We show that indeed, as Rsm grows (which means that the incompressible eddies occupy a larger portion of the magnetic field amplification range) the growth rate of the fastest growing mode increases, while the spatial distribution of the growing magnetic field shifts to smaller scales. Our result implies the existence of small-scale dynamo for compressible homogeneous turbulence.


1998 ◽  
Vol 60 (2) ◽  
pp. 229-241 ◽  
Author(s):  
P. K. SHARMA ◽  
R. K. CHHAJLANI

The Kelvin–Helmholtz (K–H) instability of two fluids of plasma streaming in opposite directions with the same velocity and in the presence of an external magnetic field is investigated. The usual magnetohydrodynamic equations with anisotropic pressure are considered. In the present problem, the two pressures parallel and perpendicular to the direction of the magnetic field are defined by polytropic pressure laws. The generalized pressure relations are used, and two equations of state for two pressures are assumed. The equations are linearized, and initially two different flow velocities are taken for the system. The flow is assumed to be in the direction perpendicular to the magnetic field. The problem is solved and a dispersion relation is obtained. From the dispersion relation, the K–H instability condition is obtained. It is found that the instability condition depends upon the polytropic indices of the pressure relations. The condition of instability is further obtained for MHD and Chew–Goldberger–Low systems. It is also found that the growth rate of the instability depends upon various polytropic indices.


2021 ◽  
Vol 19 (11) ◽  
pp. 32-39
Author(s):  
S.A.A. Alsaati ◽  
Qasim Shakir Kadhim ◽  
Maher Hassan Rashid ◽  
Tuqa Mohammed Jawad Abd UlKadhim

The effect of the magnetic field on heat transfer processes of a magnetized steel plate cooled in a magnetic fluid is experimentally studied. Thermocouples were installed at six points on the surface of the plate along its length. The plots of temperature versus time are obtained in the absence of a magnetic field and in magnetic fields of different intensity. It is found that the intensity of heat exchange depends to a large extent on the magnitude of the magnetic field and on the location of points on the surface of the plate. In a magnetic field, cooling of the central part of the plate occurs with the same intensity as in the absence of a magnetic field and with a lower intensity in comparison with other points on the surface of the plate. Near the plate ends, the cooling rate of the surface is much greater in the magnetic field than in the absence of it. With increasing magnetic field strength, the cooling rate of points in the central part of the plate decreases and is less than in the absence of a magnetic field. The dependence of heat transfer on the magnitude of the magnetic field is explained by the distribution of the magnetic forces acting on the liquid surrounding the plate and the nature of the vapor-air cavities formed near its surface. Experiments on simulation of formation and the shape of vapor-air cavities in a liquid surrounding a magnetizing plate are described.


Sign in / Sign up

Export Citation Format

Share Document