scholarly journals Изучение особенностей пропитки сред с двумя масштабами пористости

2021 ◽  
Vol 91 (4) ◽  
pp. 553
Author(s):  
Э.С. Батыршин ◽  
О.А. Солнышкина ◽  
Ю.А. Питюк

The trapping of bubbles during the impregnation of micromodel of dual scale porisity media by a liquid are experimentally studied. The micromodel of a porous medium is formed by a system of cylindrical pins spatially ordered in a flat microchannel. It is shown that the content of bubbles in a porous medium after impregnation depends on the capillary number and wettability of the pore surface. The proposed approach can be used to solve the practically important problem on studying and selecting optimal mechanisms to control the impregnation process of porous materials to minimize the total amount of trapped bubbles.

Author(s):  
Eslam Ezzatneshan ◽  
Reza Goharimehr

In the present study, a pore-scale multicomponent lattice Boltzmann method (LBM) is employed for the investigation of the immiscible-phase fluid displacement in a homogeneous porous medium. The viscous fingering and the stable displacement regimes of the invading fluid in the medium are quantified which is beneficial for predicting flow patterns in pore-scale structures, where an experimental study is extremely difficult. Herein, the Shan-Chen (S-C) model is incorporated with an appropriate collision model for computing the interparticle interaction between the immiscible fluids and the interfacial dynamics. Firstly, the computational technique is validated by a comparison of the present results obtained for different benchmark flow problems with those reported in the literature. Then, the penetration of an invading fluid into the porous medium is studied at different flow conditions. The effect of the capillary number (Ca), dynamic viscosity ratio (M), and the surface wettability defined by the contact angle (θ) are investigated on the flow regimes and characteristics. The obtained results show that for M<1, the viscous fingering regime appears by driving the invading fluid through the pore structures due to the viscous force and capillary force. However, by increasing the dynamic viscosity ratio and the capillary number, the invading fluid penetrates even in smaller pores and the stable displacement regime occurs. By the increment of the capillary number, the pressure difference between the two sides of the porous medium increases, so that the pressure drop Δp along with the domain at θ=40∘ is more than that of computed for θ=80∘. The present study shows that the value of wetting fluid saturation Sw at θ=40∘ is larger than its value computed with θ=80∘ that is due to the more tendency of the hydrophilic medium to absorb the wetting fluid at θ=40∘. Also, it is found that the magnitude of Sw computed for both the contact angles is decreased by the increment of the viscosity ratio from Log(M)=−1 to 1. The present study demonstrates that the S-C LBM is an efficient and accurate computational method to quantitatively estimate the flow characteristics and interfacial dynamics through the porous medium.


2010 ◽  
Author(s):  
S. E. Arena ◽  
R. Speith ◽  
Giuseppe Bertin ◽  
Franca De Luca ◽  
Giuseppe Lodato ◽  
...  

1984 ◽  
Vol 24 (03) ◽  
pp. 325-327 ◽  
Author(s):  
L. Paterson ◽  
V. Hornof ◽  
G. Neale

Abstract This paper discusses the viscous fingering that occurs when water or a surfactant solution displaces oil in a porous medium. Such floods were visualized in an porous medium. Such floods were visualized in an oil-wet porous medium composed of fused plastic particles. The flow structure changed significantly within the range of capillary numbers between 10 -4 and 10 -3 . The addition of surfactant resulted in narrower fingers, which developed in a more dispersive fashion. Introduction In describing fluid/fluid displacements in porous media, a useful dimensionless quantity is the capillary number, (1) which corresponds to the ratio of viscous forces to capillary forces. Here, v is the specific fluid discharge or Darcy velocity, it is viscosity, and o is interfacial tension (IFT). It has been shown that the recovery of oil from an underground reservoir increases significantly if the capillary number can be increased beyond the range of 1 × 10 -4 to 2 × 10 -3 during water flooding (see Larson et al. 1 ). To this end, surfactants are used extensively in tertiary oil recovery operations with the objective of reducing IFT and consequently mobilizing the oil ganglia which otherwise would remain trapped. This paper is concerned with the viscous fingering that occurs when water displaces oil in a porous medium, and we present a brief consideration on the effects that surfactants have on fingering. Noting that Peters and Flock have visualized fingering within the range of capillary numbers between 1.6 × 10 -6 and 7.2 × 10 -4, we present here visualizations at capillary numbers of 7.7 × 10 5 and 1.0 × 10 -3. Both our visualizations and the experiments of Peters and Flock involve large viscosity ratios so that only the viscosity of the more viscous fluid is considered when determining the capillary number. In particular, it is observed that as the capillary number increases, ganglia or blobs of displacing fluid are created at the displacement front in correspondence with the capillary numbers at which trapped ganglia are mobilized. This creation of ganglia at capillary numbers above 10 -3 was noted briefly in a previous paper 3 in which heptane displacing glycerine previous paper 3 in which heptane displacing glycerine was described. A secondary objective of this work was to test the Chuoke et al. theory for predicting the wavelength of fingers, wavelength being the peak-to-peak distance between adjacent well-developed fingers. Experimental Procedure The apparatus for these studies was described in Ref. 3. Basically, it consists of a slab of consolidated plastic particles 1.34 × 0.79 × 0.0 1 8 ft [0.44 × 0.26 × 0.006 m] with particles 1.34 × 0.79 × 0.0 1 8 ft [0.44 × 0.26 × 0.006 m] with a porosity of 0.43 and a permeability of 7, 100 darcies. This high permeability, when compared with that of reservoir rocks, should not be important for this study since capillary numbers and residual saturations are independent of pore size. Water (viscosity 1 cp [1 mPa s]) was used to displace paraffin oil (viscosity 68 cp 168 mPa s] at 77F [25C]). The water was dyed with methylene blue (which acts as a mild surfactant). Without the dye, the oil/water IFT was 42 dyne/cm [42 mN/m]. The addition of dye lowered this value to 36 dyne/cm [36 mN/m] for the concentration of dye used. For the surfactant flood, a 1 % sodium alkyl aryl sulfonate solution was used, giving a surfactant-solution/paraffin-oil IFT of 3.0 dyne/cm [3.0 mN/m]. Water Displacing Oil To compare our experiments with previous investigations of fingering, the displacement of paraffin oil by water at an average specific fluid discharge of 1.34 × 10–4 ft/sec [4.1 × 10 -5 m/s], corresponding to a capillary number of 7.7 × 10 -5, was studied (Fig. 1). Chuoke et al .4 and later Peters and Flock 2 have presented a formula for predicting the wavelength of presented a formula for predicting the wavelength of finger, lambda m : (2) where k is permeability, C is a dimensionless parameter which Peters and Flock call the wettability number and suggest would have the value 25 for an oil-wet porous medium, and mu o and mu ware viscosities of the displaced oil and displacing water, respectively. It was observed that the plastic particles of the porous medium considered here were oil wet because of adsorption of oil. SPEJ P. 325


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
D. A. Nield ◽  
A. V. Kuznetsov

This note deals with three main themes. The first is a discussion of the early literature on convection in porous media. The second is a brief overview of current analytical modeling of single-phase convection in saturated porous media and in composite fluid/porous-medium domains. The third is a brief discussion of some pertinent recent studies involving nanofluids, cellular porous materials, bidisperse and tridisperse porous media.


Author(s):  
Sanjay Sharma ◽  
Dennis Siginer

Simulation of fluid flow in porous materials depends upon the accuracy of permeability measurement. This study details the development of an acoustical method to determine permeability of porous medium. Standardized acoustical testing for low frequency using impedance tube is carried out to determine the acoustical properties of the fibers. Physical properties of porous medium are determined by reverse calculation from the acoustical properties. The acoustical method is validated by comparing the measured acoustical properties of the porous medium by the analytical method. A variety of foams and fibers are tested using this methodology.


BioResources ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1407-1418
Author(s):  
Zhi-hong Zhao ◽  
Ming-hui Zhang ◽  
Wen-Jing Liu ◽  
Quan-teng Li

Time-domain nuclear magnetic resonance (TD NMR) technology has been used for pore detection in porous materials for a long time, but there are few pore detection methods for microporous-mesoporous materials. The surface of different materials is obtained by pore detection of known pore materials. Relaxation rate, which obtains aperture information, has an important practical significance for the application of time-domain NMR technology in the characterization of porous materials. In this study, the T2 peaks of pores of known pore size materials, namely zeolite molecular sieves (0.3 nm and 1 nm) and anodized aluminum porous membranes (30 nm and 90 nm), were used to calculate the pore surface relaxation of zeolite molecular sieve with 0.3 nm pore size and 1 nm pore size. The ratio of the rate of the surface is 3.379; the ratio of the pore surface relaxation ratio of the 30 nm and 90 nm apertures of the anodized aluminum porous film is 3.031. This result is very close to the pore size ratio, indicating that the surface relaxation rate of the same material is directly related to the pore size, while the T2 peak can qualitatively measure the pore size.


2006 ◽  
Vol 317-318 ◽  
pp. 683-688
Author(s):  
Fumihiro Wakai ◽  
Yutaka Shinoda ◽  
Takashi Akatsu

The sintering stress is related to the thermal stability of porous structure. The sintering stress for a given porous structure in equilibrium can be calculated by three methods theoretically; the energy difference method, the curvature method, and the force balance method. The sintering stresses by three different methods were exactly the same for the idealized porous materials in equilibrium, in which the pore surface had a constant curvature at any point. The porous material does not spontaneously shrink when the sintering stress becomes zero or negative. The sintering stress will be used to design optimal porous structures with improved thermal stability.


Author(s):  
N. K. Yamaleev ◽  
R. V. Mohan

The macroscopic flow during processing of composite structures by liquid composite molding is accompanied by the microscopic flow through individual fiber bundles. This concurrent microscopic flow occurs at length and time scales different than those of the macroscopic flow and influences the macroscopic flow behavior, impacting the void formation during composite manufacturing. A reduced-order model developed by the authors of this paper in [Proc. 2005 ASME Conf., IMECE2005-82436] for modeling the microscopic impregnation of individual fiber bundles is currently used to simulate the transient dynamics of the 1-D two-phase flow though a dual-scale porous medium during resin transfer molding (RTM). As has been show in our previous work [Inter. J. of Multiphase Flow, Vol. 32, pp. 1219–1233, 2006] the vapor-liquid phase transition and multidimensional effects of the gas entrapped inside fiber tows can play a significant role in the advancement of the macroscopic resin front and the formation of voids, thus indicating the need to account for these phenomena in the simulation of liquid composite molding processes. These effects are quantified by introducing a nonzero sink term into the right hand side of the mass conservation equation for the dual-scale porous medium, which couples the microscopic two-phase flow inside fiber bundles with the macro-flow through the perform. Two numerical methods, one of which is based on the moving coordinate system associated with the macroscopic resin front and the other one based on the fill factor technique on a fixed Eulerian coordinate system, are used to solve the resin flow through the preform. The comparative analysis of the fill factor and moving front methods as well as the results demonstrating the effect of phase transition and impregnation of individual fiber bundles on macroscopic flow parameters during RTM are presented.


Sign in / Sign up

Export Citation Format

Share Document