scholarly journals Условия достижения сверхтвердого состояния при критической наноразмерной толщине слоев в многопериодных вакуумно-дуговых нитридных покрытиях

Author(s):  
О.В. Соболь ◽  
А.А. Мейлехов

AbstractPossible mechanisms of the interfacial interaction in multiperiodic (bilayer) compositions at critical thicknesses (as small as below 10 nm) of conjugated phases have been studied for the first time using structure analysis, numerical simulations, and measurements of mechanical characteristics. For attaining a state of superhigh hardness (above 40 GPa), it is proposed to form coatings with variable layer thicknesses in the bilayer period Λ. Using this approach, 10-μm-thick coatings of the TiN/ZrN system with hardness above 44 GPa were obtained for a bilayer period of Λ ≈ 10 nm with a layer thickness ratio of 1.5/1.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2503
Author(s):  
Chiara Di Mauro ◽  
Aratz Genua ◽  
Alice Mija

In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2′-dithiodibenzoic acid (DTBA) and 3,3′-dithiodipropionic acid (DTDA); another is the combination of two aromatic structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners. It was found that the thermosets obtained with the dual crosslinked mechanism needed reduced curing temperatures and reprocessing protocols compared to the individual crosslinked thermosets. Thanks to the contribution of disulfide bonds in the network topology, the obtained thermosets showed recycling ability. The final thermomechanical properties of the virgin and mechanical reprocessed materials were analyzed by DMA and TGA. The obtained thermosets range from elastomeric to rigid materials. As an example, the ECMO/DTBA704-AFD30 virgin or reprocessed thermosets have tan δ values reaching 82–83 °C. The study also investigates the chemical recycling and the solvent resistance of these vitrimer-like materials.


2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Yifei Hao ◽  
Tianlin Li ◽  
Yu Yun ◽  
Xin Li ◽  
Xuegang Chen ◽  
...  

1984 ◽  
Vol 106 (1) ◽  
pp. 142-148 ◽  
Author(s):  
E. W. Adams ◽  
J. P. Johnston

A mixing-length model is developed for the prediction of turbulent boundary layers with convex streamwise curvature. For large layer thickness ratio, δ/R > 0.05, the model scales mixing length on the wall radius of curvature, R. For small δ/R, ordinary flat wall modeling is used for the mixing-length profile with curvature corrections, following the recommendations of Eide and Johnston [7]. Effects of streamwise change of curvature are considered; a strong lag from equilibrium is required when R increases downstream. Fifteen separate data sets were compared, including both hydrodynamic and heat transfer results. In this paper, six of these computations are presented and compared to experiment.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012095
Author(s):  
L P Myasnikova ◽  
A K Borisov ◽  
Yu M Boiko ◽  
A P Borsenko ◽  
V F Drobot’ko ◽  
...  

Abstract The ultra-high-molecular-weight polyethylene reactor powders are widely used for the actively developing solvent-free method for producing high-strength high-modulus PE filaments, which includes the compaction and sintering of a powder followed by orientational hardening. To find an appropriate regime of the technological process, it is important to know how the nanostructure changes when transforming from a powder to a precursor for hardening. Nanocrystalline lamellae are characteristics of the powder structure. For the first time, the DSC technique was used to follow changes in the thickness distribution of lamellae in ultra-high-molecular-weight polyethylene reactor powder on its way to a precursor for orientation hardening. It was found that the percentage of thick (>15 nm) and thin (10 nm) lamellae in compacted samples and those sintered at temperatures lower than the melting temperature of PE (140°C) remains nearly the same. However, significant changes in the content of lamellae of different thicknesses were observed in the samples sintered at 145°C with subsequent cooling under different conditions. The influence of the lamellae thickness distribution in precursors on the mechanical characteristics of oriented filaments was discussed.


2010 ◽  
Vol 660 ◽  
pp. 1-4 ◽  
Author(s):  
B. STEVENS

Mixing processes at cloud boundaries are thought to play a critical role in determining cloud lifetime, spatial extent and cloud microphysical structure. High-fidelity direct numerical simulations by Mellado (J. Fluid Mech., 2010, this issue, vol. 660, pp. 5–36) show, for the first time, the character and potency of a curious instability that may arise as a result of molecular mixing processes at cloud boundaries, an instability which until now has been thought by many to control the distribution of climatologically important cloud regimes.


2012 ◽  
Vol 25 (7) ◽  
pp. 2193-2198 ◽  
Author(s):  
P. Prieto ◽  
L. Marín ◽  
S. M. Diez ◽  
J.-G. Ramirez ◽  
M. E. Gómez

Author(s):  
Meng Ji ◽  
Ke Chen ◽  
Yunxiang You ◽  
Ruirui Zhang

Abstract Although ocean structures are complex, they all can be disassembled into a number of simple-shaped parts. One common shape is the slender body mentioned in this paper, and we focus on studying the mechanism of this shape. Experiments were carried out to study features of wave loads exerted by internal solitary waves (ISWs) on a submerged slender body. ISWs were generated by a piston-type wave maker in a large-type density stratified two-layer fluid wave flume. Using a three-component force transducer, the force variation of three degree of freedom (DOF) on the model was recorded. A satisfactory prediction method is established for ISWs on a submerged slender body based on internal solitary wave theory, Morison equation and pressure integral. Calculations based on this new prediction method are in good agreement with the experimental results. The experimental results and calculations show that, different incident angles, wave amplitude and layer thickness ratio have great effects on the wave loads, especially transverse incident waves bring much more severely influence. Besides the forces increase linearly with the wave amplitude becoming larger, and the maximums of the horizontal forces increase with the layer thickness ratio increasing.


Sign in / Sign up

Export Citation Format

Share Document