scholarly journals Ядерные тормозные способности изотопов водорода и гелия в бериллии, углероде и вольфраме

Author(s):  
А.Н. Зиновьев ◽  
П.Ю. Бабенко

The nuclear stopping power of hydrogen isotopes and helium in Be, C, W materials, which are promising for use as the first wall of a tokamak-reactor, are calculated. It is shown that the presence of an attractive well in the potential significantly affects the dependence of nuclear stopping power on the collision energy. The use of potentials calculated in the density functional theory with an attractive well allowed us to obtain more accurate values of the nuclear stopping power for hydrogen isotopes, which at low energies differ by 27-60% from the reference data. The results for different hydrogen isotopes are well described by a universal curve.

2015 ◽  
Vol 17 (24) ◽  
pp. 15771-15780 ◽  
Author(s):  
Khrystyna Regeta ◽  
Christoph Bannwarth ◽  
Stefan Grimme ◽  
Michael Allan

Collisions of slow electrons with ionic liquids and DFT/MRCI calculations reveal triplet states and interesting physics at low energies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4086
Author(s):  
Weiliang Ma ◽  
Marie-Christine Record ◽  
Jing Tian ◽  
Pascal Boulet

Owing to their low lattice thermal conductivity, many compounds of the n(PbTe)-m(Bi2Te3) homologous series have been reported in the literature with thermoelectric (TE) properties that still need improvement. For this purpose, in this work, we have implemented the band engineering approach by applying biaxial tensile and compressive strains using the density functional theory (DFT) on various compounds of this series, namely Bi2Te3, PbBi2Te4, PbBi4Te7 and Pb2Bi2Te5. All the fully relaxed Bi2Te3, PbBi2Te4, PbBi4Te7 and Pb2Bi2Te5 compounds are narrow band-gap semiconductors. When applying strains, a semiconductor-to-metal transition occurs for all the compounds. Within the range of open-gap, the electrical conductivity decreases as the compressive strain increases. We also found that compressive strains cause larger Seebeck coefficients than tensile ones, with the maximum Seebeck coefficient being located at −2%, −6%, −3% and 0% strain for p-type Bi2Te3, PbBi2Te4, PbBi4Te7 and Pb2Bi2Te5, respectively. The use of the quantum theory of atoms in molecules (QTAIM) as a complementary tool has shown that the van der Waals interactions located between the structure slabs evolve with strains as well as the topological properties of Bi2Te3 and PbBi2Te4. This study shows that the TE performance of the n(PbTe)-m(Bi2Te3) compounds is modified under strains.


2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


2021 ◽  
Author(s):  
Takashi Kurogi ◽  
Keiichi Irifune ◽  
Takahiro Enoki ◽  
Kazuhiko Takai

Reduction of CCl4 by CrCl2 in THF afforded a trinuclear chromium(III) carbyne [CrCl(thf)2)]3(μ3-CCl)(μ-Cl)3. The chlorocarbyne complex reacted with aldehydes to afford chloroallylic alcohols and terminal alkynes. The density functional theory...


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


2015 ◽  
Vol 17 (34) ◽  
pp. 22448-22454 ◽  
Author(s):  
K. Zberecki ◽  
R. Swirkowicz ◽  
J. Barnaś

Conventional and spin related thermoelectric effects in zigzag boron nitride nanoribbons are studied theoretically within the Density Functional Theory (DFT) approach.


Sign in / Sign up

Export Citation Format

Share Document