scholarly journals Inviscid and viscous models of axisymmetric fluid jets or plumes

2012 ◽  
Vol 53 ◽  
pp. 228
Author(s):  
Nicholas A Letchford ◽  
Lawrence K Forbes ◽  
Graeme C Hocking
Keyword(s):  
2012 ◽  
Vol 53 (3) ◽  
pp. 228-250 ◽  
Author(s):  
NICHOLAS A. LETCHFORD ◽  
LAWRENCE K. FORBES ◽  
GRAEME C. HOCKING

AbstractThe vertical rise of a round plume of light fluid through a surrounding heavier fluid is considered. An inviscid model is analysed in which the boundary of the plume is taken to be a sharp interface. An efficient spectral method is used to solve this nonlinear free-boundary problem, and shows that the plume narrows as it rises. A generalized condition is also introduced at the boundary, and allows the ambient fluid to be entrained into the rising plume. In this case, the fluid plume first narrows then widens as it rises. These features are confirmed by an asymptotic analysis. A viscous model of the same situation is also proposed, based on a Boussinesq approximation. It qualitatively confirms the widening of the plume due to entrainment of the ambient fluid, but also shows the presence of vortex rings around the interface of the rising plume.


1968 ◽  
Vol 6 (6) ◽  
pp. 317-328 ◽  
Author(s):  
A.E. Green ◽  
N. Laws
Keyword(s):  

2017 ◽  
Vol 15 (01) ◽  
pp. 1830001 ◽  
Author(s):  
G. S. Khadekar ◽  
Deepti Raut

In this paper, we present two viscous models of non-perfect fluid by avoiding the introduction of exotic dark energy. We consider the first model in terms of deceleration parameter [Formula: see text] has a viscosity of the form [Formula: see text] and the other model in quadratic form of [Formula: see text] of the type [Formula: see text]. In this framework we find the solutions of field equations by using inhomogeneous equation of state of form [Formula: see text] with equation of state parameter [Formula: see text] is constant and [Formula: see text].


Author(s):  
G. A. Atanov ◽  
A. N. Semco ◽  
O. P. Petrenko ◽  
E. S. Geskin ◽  
V. Samardzic ◽  
...  

The paper is concerned with improvement of the devices for formation of super high-speed fluid jets termed hydro cannon. Two modes of the energy injection into the fluid (the piston impact and the powder explosion) are considered and advantages of the use of the gunpowder are determined. A numerical technique for prediction of the jet formation, developed previously by one of the authors is applied for description of the velocity and pressure fields within the hydro cannon. Effect of the design parameters on the fluid acceleration is explored and suggestions for improvement of the hydro cannon design are made.


Author(s):  
Michael Krieg ◽  
Kamran Mohseni

Squid and jellyfish generate propulsive forces by successively taking in and expelling high momentum jets of water. This method of propulsion offers several advantages to underwater vehicles/robots. The driving mechanism can be placed internal to the vehicle, reducing the drag associated with an abundance of external thrusters and control surfaces. The thrusters can generate accurate predictable forcing in the low thrust range, while still generating thrust nearly instantaneously over the entire force range. Vortex ring formation dynamics play an important role in creating thrust. It is observed that squid and jellyfish eject fluid jets which are not exactly parallel, and have a contracting velocity in the radial direction. A prototype thruster was developed which generates both parallel and converging propulsive jets. The total impulse of the jet is determined from DPIV techniques to determine the effect a non-zero radial velocity had on thrust production. The radial velocity was observed to increase the total impulse of the jet by 70% for low stroke ratio jets, and 75% for large stroke ratio jets.


2013 ◽  
Vol 110 (12) ◽  
Author(s):  
Navish Wadhwa ◽  
Pavlos Vlachos ◽  
Sunghwan Jung
Keyword(s):  

1998 ◽  
Vol 44 (147) ◽  
pp. 285-292 ◽  
Author(s):  
Richard C. A. Hindmarsh

AbstractA perturbation method is used to analyse the stability of a thin till layer overlain by a deep ice layer. Ice is modelled as a linearly viscous fluid, while the till viscosity has power-law dependence on stress and effective pressure. A linearized set of equations yields descriptions of the coupling of the ice flow with the sediment flow and reveals parameter ranges where the till-perturbation amplitude can grow. This sheet-flow instability is an essential part of any theory of drumlin formation and shows that viscous models of till have the ability to explain typical deforming-bed features. This is of great significance for large-scale ice-sheet modelling.


Sign in / Sign up

Export Citation Format

Share Document