Stop the new gene, the alien: Predicted breakdown of MYB overexpression by ncRNA mediated gene regulations

2017 ◽  
Vol 4 (2) ◽  
Author(s):  
NEHA SINGH ◽  
INDERJEET BHOGAL ◽  
ABHISHEK KUMAR ◽  
PUNIT TYAGI ◽  
GIRIJA SIKARWAR ◽  
...  

Acclimatization is a process that occurs in individual cells to a drastic change in micro and macro environments. When an organism is subjected to a new environment or a change in its normal growing conditions, the cellular mechanisms initiate a warning sign and over a period of time or over generations the acquired, modified traits are being communicated and fixed as a new trait. If there is lack of equilibrium within the cell due to over expression of a single gene or network of associated genes either manmade or due to mutations, the organism or plant tries to fix it by initiating gene regulatory mechanisms. According to our neutral theory of gene expression, always a cell tries to maintain its pH by modifying its cytosol through altered gene expression. In the present investigation, 198 AtMYB genes were analyzed and found to play an intrinsic photosystem linked network of 38 nodes where MYB being regulated by a set of 48 miRNAs. Members of the network have evidence-based link to energy related mechanisms. Altering gene expression to an extent where, the cell may not be able to fix it or a trait, which requires excessive energy loss escorts the organism’s gene regulation by breakdown of the introduced sequence over few generations. Events with constitutive overexpression may suffer poor performance over the years based on gene network prevailing in the crop of interest. Hence, network rewiring with minimal energy expenses is concerned.

Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3374-3376 ◽  
Author(s):  
Robert Kralovics ◽  
Soon-Siong Teo ◽  
Andreas S. Buser ◽  
Martin Brutsche ◽  
Ralph Tiedt ◽  
...  

AbstractWe identified 13 new gene expression markers that were elevated and one marker, ANKRD15, that was down-regulated in patients with polycythemia vera (PV). These 14 markers, as well as the previously described PRV1 and NF-E2, exhibited the same gene expression alterations also in patients with exogenously activated granulocytes due to sepsis or granulocyte colony-stimulating factor (G-CSF) treatment. The recently described V617F mutation in the Janus kinase 2 (JAK2) gene allows defining subclasses of patients with myeloproliferative disorders based on the JAK2 genotype. Patients with PV who were homozygous or heterozygous for JAK2-V617F exhibited higher levels of expression of the 13 new markers, PRV1, and NF-E2 than patients without JAK2-V617F, whereas ANKRD15 was down-regulated in these patients. Our results suggest that the alterations in expression of the markers studied are due to the activation of the Jak/signal transducer and activator of transcription (STAT) pathway through exogenous stimuli (sepsis or G-CSF treatment), or endogenously through the JAK2-V617F mutation.


2003 ◽  
Vol 77 (16) ◽  
pp. 8934-8947 ◽  
Author(s):  
Roberta L. DeBiasi ◽  
Penny Clarke ◽  
Suzanne Meintzer ◽  
Robert Jotte ◽  
B. K. Kleinschmidt-Demasters ◽  
...  

ABSTRACT Reoviruses are a leading model for understanding cellular mechanisms of virus-induced apoptosis. Reoviruses induce apoptosis in multiple cell lines in vitro, and apoptosis plays a key role in virus-induced tissue injury of the heart and brain in vivo. The activation of transcription factors NF-κB and c-Jun are key events in reovirus-induced apoptosis, indicating that new gene expression is critical to this process. We used high-density oligonucleotide microarrays to analyze cellular transcriptional alterations in HEK293 cells after infection with reovirus strain T3A (i.e., apoptosis inducing) compared to infection with reovirus strain T1L (i.e., minimally apoptosis inducing) and uninfected cells. These strains also differ dramatically in their potential to induce apoptotic injury in hearts of infected mice in vivo—T3A is myocarditic, whereas T1L is not. Using high-throughput microarray analysis of over 12,000 genes, we identified differential expression of a defined subset of genes involved in apoptosis and DNA repair after reovirus infection. This provides the first comparative analysis of altered gene expression after infection with viruses of differing apoptotic phenotypes and provides insight into pathogenic mechanisms of virus-induced disease.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Endoscopy ◽  
2004 ◽  
Vol 36 (05) ◽  
Author(s):  
K Collins ◽  
GA Doherty ◽  
MR Sweeney ◽  
SM Byrne ◽  
AA Aftab ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document