scholarly journals Modelling the Cumulative Number of COVID-19 Cases

2021 ◽  
Vol 02 (02) ◽  
pp. 1-1
Author(s):  
Mieczysław Szyszkowicz ◽  

Each country has its own characteristics of COVID-19 infection trajectory and epidemic waves. Differences in government-implemented restrictions and social regulations result in variability of the virus transmissions and spread dynamics. This in turn results in various shapes of the growth function used to represent and describe the propagation of infection. Statistical methods are applied to fit non-linear functions to represent daily time-series data of the cumulative numbers of COVID-19 cases. The aim of this work is to fit various statistical models to the cumulative number of COVID-19 cases. Also to overview various types of the existed numerical methodologies. The data (since December 31, 2019) are available for almost each country in the world. As the examples, we used daily time-series data of the cumulative number of COVID-19 cases in Poland, Italy, Canada, and the USA. Non-linear approximations are applied to represent these time series data. The fitted functions allow us to investigate the dynamics of the pandemic. The constructed approximations are compositions of a few nonlinear functions, which describe the growth process of the COVID-19 infection trajectories. Two Gompertz functions and cumulative distribution functions (cdf) were estimated for the data of Poland and Italy (using the cdf for the normal distribution) and for the data of Canada and the USA (using the cdf for the gamma distribution). An analytical (parametric) functions representation of the number of COVID-19 cumulative cases is a useful tool to study the propagation of epidemics.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tomoya Kawasaki ◽  
Takuma Matsuda ◽  
Yui-yip Lau ◽  
Xiaowen Fu

Purpose In the maritime industry, it is vital to have a reliable forecast of container shipping demand. Although indicators of economic conditions have been used in modeling container shipping demand on major routes such as those from East Asia to the USA, the duration of such indicators’ effects on container movement demand have not been systematically examined. To bridge this gap in research, this study aims to identify the important US economic indicators that significantly affect the volume of container movements and empirically reveal the duration of such impacts. Design/methodology/approach The durability of economic indicators on container movements is identified by a vector autoregression (VAR) model using monthly-based time-series data. In the VAR model, this paper can analyze the effect of economic indicators at t-k on container movement at time t. In the model, this paper considers nine US economic indicators as explanatory variables that are likely to affect container movements. Time-series data are used for 228 months from January 2001 to December 2019. Findings In the mainland China route, “building permission” receives high impact and has a duration of 14 months, reflecting the fact that China exports a high volume of housing-related goods to the USA. Regarding the South Korea and Japan routes, where high volumes of machinery goods are exported to the USA, the “index of industrial production” receives a high impact with 11 and 13 months’ duration, respectively. On the Taiwan route, as several types of goods are transported with significant shares, “building permits” and “index of industrial production” have important effects. Originality/value Freight demand forecasting for bulk cargo is a popular research field because of the public availability of several time-series data. However, no study to date has measured the impact and durability of economic indicators on container movement. To bridge the gap in the literature in terms of the impact of economic indicators and their durability, this paper developed a time-series model of the container movement from East Asia to the USA.


Author(s):  
Adib Mashuri Et.al

This study focused on chaotic analysis of water level data in different elevations located in the highland and lowland areas. This research was conducted considering the uncertain water level caused by the river flow from highland to lowland areas. The analysis was conducted using the data collected from the four area stations along Pahang River on different time scales which were hourly and daily time series data. The resulted findings were relevant to be used by the local authorities in water resource management in these areas. Two methods were used for the analysis process which included Cao method and phase space plot. Both methods are based on phase space reconstruction that is referring to reconstruction of one dimensional data (water level data) to d-dimensional phase space in order to determine the dynamics of the system. The combination of parameters  and d is required in phase space reconstruction. Results showed that (i) the combination of phase space reconstruction’s parameters gave a higher value of parameters by using hourly time scale compared to daily time scale for different elevation; (ii) different elevation gave impact on the values of phase space reconstructions’ parameters; (iii) chaotic dynamics existed using Cao method and phase space plot for different elevation and time scale. Hence, water level data with different time scale from different elevation in Pahang River can be used in the development of prediction model based on chaos approach.


2018 ◽  
Vol 11 (3) ◽  
pp. 51 ◽  
Author(s):  
Rabia Luqman ◽  
Rehana Kouser

The symmetrical relationship between currency and equity markets has gained much attention among academicians and policy makers in the recent era. Many studies conducted on this relationship have concluded that there is short-run relationship between these variables and found less evidence about a long-run relationship. Moreover, all previous studies supposed the linear or symmetrical relationship between these variables. In this study, we use daily time series data from G8+5 countries and Pakistan for 2000–2016 and apply linear and non-linear autoregressive distributed lag (ARDL) to check the symmetrical and asymmetrical relationship between currency and equity markets. Results have shown that there are asymmetrical linkages between the currency and equity markets.


2009 ◽  
Vol 6 (12) ◽  
pp. 2985-3008 ◽  
Author(s):  
W. M. Kemp ◽  
J. M. Testa ◽  
D. J. Conley ◽  
D. Gilbert ◽  
J. D. Hagy

Abstract. The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O2) response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O2 in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter) inputs. Of the 24 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors. These analyses should consider: (1) the dominant temporal scales of the hypoxia, (2) the relative contributions of inorganic and organic nutrients, (3) the influence of shifts in climatic and oceanographic processes, and (4) the roles of feedback interactions whereby O2-sensitive biogeochemistry, trophic interactions, and habitat conditions influence the nutrient and algal dynamics that regulate O2 levels.


Sign in / Sign up

Export Citation Format

Share Document