scholarly journals Hydrogen Storage in Cryogenic, Cybernetic, and Catalytic Vessels for Transport Vehicles

2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Ernest Ilisca ◽  
◽  

Most of the hydrogen storage vessels meant for vehicles to run the electric motor via a fuel cell during transport are designed for drives of only a few tenths of kilometers per day. The present report, however, describes a vessel model that is conceived to hold the hydrogen energy only for short periods during transport, such as a few hours. This would include transport via a light-duty vehicle, a taxi, or a bus, which would load liquid hydrogen at a station every morning for the day. This is a simple model based on the novel concept of Double Open Vessel (DOV), in which the liquid H2 is loaded inside an open container inserted inside another open container. The walls of this DOV are constituted of simplified linings that allow the entry of thermal heat nearly a hundred times greater than that allowed by the cryo-compressed vessels with higher insulation. After loading, the liquid evaporates, while the gas flows around its initial container into which it was loaded, passes through a few porous plugs, and is gradually released towards the Fuel Cell (or toward an ignition motor). Such a counter-flow of the gas creates a retroaction effect that insulates the inner container, thereby delaying the increases in temperature and pressure. The successive porous plugs installed in the space between the two containers form a system of barrages that regulate the gas flow through successive expansions of decreasing pressures. In addition, these catalytic plugs convert a portion of the loaded hydrogen into its ortho variety, acting as a heat pump, while temporarily storing the other portion. Collectively, these effects maintain the internal pressures below 150 bar. The proposed design for the DOV models is convenient to manufacture and has a lighter weight, and consequently, a low cost.

Author(s):  
Peter P. Edwards ◽  
Vladimir L. Kuznetsov

Hydrogen is the simplest and most abundant chemical element in our universe— it is the power source that fuels the Sun and its oxide forms the oceans that cover three quarters of our planet. This ubiquitous element could be part of our urgent quest for a cleaner, greener future. Hydrogen, in association with fuel cells, is widely considered to be pivotal to our world’s energy requirements for the twenty-first century and it could potentially redefine the future global energy economy by replacing a carbon-based fossil fuel energy economy. The principal drivers behind the sustainable hydrogen energy vision are therefore: • the urgent need for a reduction in global carbon dioxide emissions; • the improvement of urban (local) air quality; • the abiding concerns about the long-term viability of fossil fuel resources and the security of our energy supply; • the creation of a new industrial and technological energy base—a base for innovation in the science and technology of a hydrogen/fuel cell energy landscape. The ultimate realization of a hydrogen-based economy could confer enormous environmental and economic benefits, together with enhanced security of energy supply. However, the transition from a carbon-based(fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological, and socio-economic barriers. These include: • low-carbon hydrogen production from clean or renewable sources; • low-cost hydrogen storage; • low-cost fuel cells; • large-scale supporting infrastructure, and • perceived safety problems. In the present chapter we outline the basis of the growing worldwide interest in hydrogen energy and examine some of the important issues relating to the future development of hydrogen as an energy vector. As a ‘snapshot’ of international activity, we note, for example, that Japan regards the development and dissemination of fuel cells and hydrogen technologies as essential: the Ministry of Economy and Industry (METI) has set numerical targets of 5 million fuel cell vehicles and10 million kW for the total power generation by stationary fuel cells by 2020. To meet these targets, METI has allocated an annual budget of some £150 million over four years.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5463 ◽  
Author(s):  
Yi Zhang ◽  
Hexu Sun ◽  
Yingjun Guo

In some areas, the problem of wind and solar power curtailment is prominent. Hydrogen energy has the advantage of high storage density and a long storage time. Multi-energy hybrid systems including renewable energies, batteries and hydrogen are designed to solve this problem. In order to reduce the power loss of the converter, an AC-DC hybrid bus is proposed. A multi-energy experiment platform is established including a wind turbine, photovoltaic panels, a battery, an electrolyzer, a hydrogen storage tank, a fuel cell and a load. The working characteristics of each subsystem are tested and analyzed. The multi-energy operation strategy is based on state monitoring and designed to enhance hydrogen utilization, energy efficiency and reliability of the system. The hydrogen production is guaranteed preferentially and the load is reliably supplied. The system states are monitored, such as the state of charge (SOC) and the hydrogen storage level. The rated and ramp powers of the battery and fuel cell and the pressure limit of the hydrogen storage tank are set as safety constraints. Eight different operation scenarios comprehensively evaluate the system’s performance, and via physical experiments the proposed operation strategy of the multi-energy system is verified as effective and stable.


Author(s):  
David Tamburello ◽  
Bruce Hardy ◽  
Claudio Corgnale ◽  
Martin Sulic ◽  
Donald Anton

Numerical models for the evaluation of cryo-adsorbent based hydrogen (H2) storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the equations for the adsorbent thermodynamics together with the conservation equations for heat, mass, and momentum. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both activated carbon and MOF-5™ systems. Applications of the model include detailed finite element analysis simulations and full vehicle-level system analyses. The full system models were used to compare prospective system design performance given specific options, such as the adsorbent materials, pressure vessel types, internal heat exchangers, and operating conditions. The full vehicle model, which also allows the user to compare adsorbent systems with compressed gas, metal hydride, and chemical hydrogen storage systems, is based on an 80 kW fuel cell with a 20 kW battery evaluated using standard drive cycles. This work is part of the Hydrogen Storage Engineering Center of Excellence (HSECoE), which brings materials development and hydrogen storage technology efforts together to address onboard hydrogen storage in light duty vehicle applications. The HSECoE spans the design space of the vehicle requirements, balance of plant requirements, storage system components, and materials engineering. Theoretical, computational, and experimental efforts are combined to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy (DOE) 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles.


Author(s):  
Sheng Ye ◽  
Jinyang Zheng ◽  
Ting Yu ◽  
Chaohua Gu ◽  
Zhengli Hua

Abstract Large scale storage of hydrogen is one of the key factors in hydrogen energy development. High-pressure hydrogen storage technology is widely used in hydrogen storage. It has advantages of easy operating, quick charge and discharge, simple equipment structure and low cost. The multi-layered steel vessel (MLSV) was developed for stationary hydrogen storage, which was flexible in design, safe in operation and convenient in fabrication. MLSV has been used in several hydrogen refueling stations in China. With the construction of hydrogen refueling stations accelerated, the vessel was required to be larger, lighter and cheaper. First, the basic structure of the MLSV was presented. Second, two light-weight methods were proposed and compared, including reducing the safety factor and increasing the strength of the steel band. Finally, the stress in the cylindrical shell of the MLSV using light-weight design were compared with the previous one. In addition, a MLSV using the light-weight method of reducing safety factor has been designed and fabricated, which can store 211 kg gaseous hydrogen at 50MPa.


2021 ◽  
Vol 5 (6) ◽  
pp. 145
Author(s):  
Song-Jeng Huang ◽  
Matoke Peter Mose ◽  
Sathiyalingam Kannaiyan

The use of Mg-based compounds in solid-state hydrogen energy storage has a very high prospect due to its high potential, low-cost, and ease of availability. Today, solid-state hydrogen storage science is concerned with understanding the material behavior of different compositions and structure when interacting with hydrogen. Finding a suitable material has remained an elusive idea, and therefore, this review summarizes works by various groups, the milestones they have achieved, and the roadmap to be taken on the study of hydrogen storage using low-cost magnesium composites. Mg-based compounds are further examined from the perspective of artificial intelligence studies, which helps to improve prediction of their properties and hydrogen storage performance. There exist several techniques to improve the performance of Mg-based compounds: microstructure modification, use of catalytic additives, and composition regulation. Microstructure modification is usually achieved by employing different synthetic techniques like severe plastic deformation, high energy ball milling, and cold rolling, among others. These synthetic approaches are discussed herein. In this review, a discussion of key parameters and operating conditions are highlighted in a view to finding high storage capacity and faster kinetics. Furthermore, recent approaches like machine learning have found application in guiding the experimental design. Hence, this review paper also explores how machine learning techniques have been utilized to fasten the materials research. It is however noted that this study is not exhaustive in itself.


Author(s):  
David Tamburello ◽  
Bruce Hardy ◽  
Martin Sulic ◽  
Matthew Kesterson ◽  
Claudio Corgnale ◽  
...  

Numerical models for the evaluation of cryo-adsorbent based hydrogen storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the conservation equations for heat, mass, and momentum together with the equations for the adsorbent thermodynamics. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both MOF-5™ and activated carbon systems. Applications of the model include detailed finite element analysis simulations as well as full vehicle-level system analyses. The present work provides an overview of the compacted adsorbent MOF-5™ storage prototype system, as well as a detailed computational analysis and its validation using 2-liter prototype test system. The results of these validated computational analyses are then projected to a full scale vehicle system, based on an 80 KW fuel cell with a 20 kW battery. This work is part of the Hydrogen Storage Engineering Center of Excellence (HSECoE), which brings materials development and hydrogen storage technology efforts address onboard hydrogen storage in light duty vehicle applications. The HSECoE spans the design space of the vehicle requirements, balance of plant requirements, storage system components, and materials engineering. Theoretical, computational, and experimental efforts are combined to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy (DOE) 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles.


2014 ◽  
Vol 83 (1) ◽  
pp. 63-69
Author(s):  
Akihiko FUKUNAGA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document