scholarly journals Review Research of Medical Image Analysis Using Deep Learning

2020 ◽  
Vol 4 (2) ◽  
pp. 75
Author(s):  
Bakhtyar Ahmed Mohammed ◽  
Muzhir Shaban Al-Ani

In modern globe, medical image analysis significantly participates in diagnosis process. In general, it involves five processes, such as medical image classification, medical image detection, medical image segmentation, medical image registration, and medical image localization. Medical imaging uses in diagnosis process for most of the human body organs, such as brain tumor, chest, breast, colonoscopy, retinal, and many other cases relate to medical image analysis using various modalities. Multi-modality images include magnetic resonance imaging, single photon emission computed tomography (CT), positron emission tomography, optical coherence tomography, confocal laser endoscopy, magnetic resonance spectroscopy, CT, X-ray, wireless capsule endoscopy, breast cancer, papanicolaou smear, hyper spectral image, and ultrasound use to diagnose different body organs and cases. Medical image analysis is appropriate environment to interact with automate intelligent system technologies. Among the intelligent systems deep learning (DL) is the modern one to manipulate medical image analysis processes and processing an image into fundamental components to extract meaningful information. The best model to establish its systems is deep convolutional neural network. This study relied on reviewing of some of these studies because of these reasons; improvements of medical imaging increase demand on automate systems of medical image analysis using DL, in most tested cases, accuracy of intelligent methods especially DL methods higher than accuracy of hand-crafted works. Furthermore, manually works need a lot of time compare to systematic diagnosis.


2020 ◽  
Vol 64 (2) ◽  
pp. 20508-1-20508-12 ◽  
Author(s):  
Getao Du ◽  
Xu Cao ◽  
Jimin Liang ◽  
Xueli Chen ◽  
Yonghua Zhan

Abstract Medical image analysis is performed by analyzing images obtained by medical imaging systems to solve clinical problems. The purpose is to extract effective information and improve the level of clinical diagnosis. In recent years, automatic segmentation based on deep learning (DL) methods has been widely used, where a neural network can automatically learn image features, which is in sharp contrast with the traditional manual learning method. U-net is one of the most important semantic segmentation frameworks for a convolutional neural network (CNN). It is widely used in the medical image analysis domain for lesion segmentation, anatomical segmentation, and classification. The advantage of this network framework is that it can not only accurately segment the desired feature target and effectively process and objectively evaluate medical images but also help to improve accuracy in the diagnosis by medical images. Therefore, this article presents a literature review of medical image segmentation based on U-net, focusing on the successful segmentation experience of U-net for different lesion regions in six medical imaging systems. Along with the latest advances in DL, this article introduces the method of combining the original U-net architecture with deep learning and a method for improving the U-net network.



Author(s):  
Hafiz Mughees Ahmad ◽  
Muhammad Jaleed Khan ◽  
Adeel Yousaf ◽  
Sajid Ghuffar ◽  
Khurram Khurshid

Deep learning has attracted great attention in the medical imaging community as a promising solution for automated, fast and accurate medical image analysis, which is mandatory for quality healthcare. Convolutional neural networks and its variants have become the most preferred and widely used deep learning models in medical image analysis. In this paper, concise overviews of the modern deep learning models applied in medical image analysis are provided and the key tasks performed by deep learning models, i.e. classification, segmentation, retrieval, detection, and registration are reviewed in detail. Some recent researches have shown that deep learning models can outperform medical experts in certain tasks. With the significant breakthroughs made by deep learning methods, it is expected that patients will soon be able to safely and conveniently interact with AI-based medical systems and such intelligent systems will actually improve patient healthcare. There are various complexities and challenges involved in deep learning-based medical image analysis, such as limited datasets. But researchers are actively working in this area to mitigate these challenges and further improve health care with AI.



2019 ◽  
Vol 14 (4) ◽  
pp. 450-469 ◽  
Author(s):  
Jiechao Ma ◽  
Yang Song ◽  
Xi Tian ◽  
Yiting Hua ◽  
Rongguo Zhang ◽  
...  

AbstractAs a promising method in artificial intelligence, deep learning has been proven successful in several domains ranging from acoustics and images to natural language processing. With medical imaging becoming an important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful techniques in medical image areas. In this process, feature representations are learned directly and automatically from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their future challenges and potential directions are discussed.



2021 ◽  
Vol 6 (5) ◽  
pp. 156-167
Author(s):  
Chetanpal Singh

Deep learning has played a potential role in quality healthcare with fast automated and proper medical image analysis. In clinical applications, medical imaging is one of the most important parameters as with the help of this; experts can detect, monitor, and diagnose any kind of problems that are there in the patient's body. However, there are two things that one needs to understand; that is, the implementation of Artificial Neural Networks and Convolutional Neural Networks as well as deep learning to know about medical image analysis. It is necessary to state here that the deep learning approach is gaining attention in the medical imaging field in evaluating the presence or absence of disease in a patient. Mammography images, digital histopathology images, computerized tomography, etc. are some of the areas on which DL implementation focuses. One upon going through the paper will get to know the recent development that has occurred in this field and come up with a critical review on this aspect. The paper has demonstrated in detail modern deep learning models that are implemented in medical image analysis. There is no doubt about the promising future of the deep learning models and according to experts; the implementation of deep learning techniques has outperformed medical experts in numerous tasks. However, deep learning also has some drawbacks and challenges that are required to be addressed like limited datasets and many more. To mitigate such kinds of challenges, researchers are working on this aspect so that they can enhance healthcare by deploying AI.



Author(s):  
R. Udendhran ◽  
Balamurugan M.

The recent growth of big data has ushered in a new era of deep learning algorithms in every sphere of technological advance, including medicine, as well as in medical imaging, particularly radiology. However, the recent achievements of deep learning, in particular biomedical applications, have, to some extent, masked decades-long developments in computational technology for medical image analysis. The methods of multi-modality medical imaging have been implemented in clinical as well as research studies. Due to the reason that multi-modal image analysis and deep learning algorithms have seen fast development and provide certain benefits to biomedical applications, this chapter presents the importance of deep learning-driven medical imaging applications, future advancements, and techniques to enhance biomedical applications by employing deep learning.



2021 ◽  
Vol 198 ◽  
pp. 105796
Author(s):  
Alain Jungo ◽  
Olivier Scheidegger ◽  
Mauricio Reyes ◽  
Fabian Balsiger


2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.



Sign in / Sign up

Export Citation Format

Share Document