scholarly journals Socioeconomic Disparities in Social Distancing During the COVID-19 Pandemic in the United States: Observational Study (Preprint)

2020 ◽  
Author(s):  
Romain Garnier ◽  
Jan R Benetka ◽  
John Kraemer ◽  
Shweta Bansal

BACKGROUND Eliminating disparities in the burden of COVID-19 requires equitable access to control measures across socio-economic groups. Limited research on socio-economic differences in mobility hampers our ability to understand whether inequalities in social distancing are occurring during the SARS-CoV-2 pandemic. OBJECTIVE We aimed to assess how mobility patterns have varied across the United States during the COVID-19 pandemic and to identify associations with socioeconomic factors of populations. METHODS We used anonymized mobility data from tens of millions of devices to measure the speed and depth of social distancing at the county level in the United States between February and May 2020, the period during which social distancing was widespread in this country. Using linear mixed models, we assessed the associations between social distancing and socioeconomic variables, including the proportion of people in the population below the poverty level, the proportion of Black people, the proportion of essential workers, and the population density. RESULTS We found that the speed, depth, and duration of social distancing in the United States are heterogeneous. We particularly show that social distancing is slower and less intense in counties with higher proportions of people below the poverty level and essential workers; in contrast, we show that social distancing is intensely adopted in counties with higher population densities and larger Black populations. CONCLUSIONS Socioeconomic inequalities appear to be associated with the levels of adoption of social distancing, potentially resulting in wide-ranging differences in the impact of the COVID-19 pandemic in communities across the United States. These inequalities are likely to amplify existing health disparities and must be addressed to ensure the success of ongoing pandemic mitigation efforts.

2020 ◽  
Author(s):  
Romain Garnier ◽  
Jan R. Benetka ◽  
John Kraemer ◽  
Shweta Bansal

AbstractImportanceEliminating disparities in the burden of COVID-19 requires equitable access to control measures across socio-economic groups. Limited research on socio-economic differences in mobility hampers our ability to understand whether inequalities in social distancing are occurring during the SARS-CoV-2 pandemic.ObjectiveTo assess how mobility patterns have varied across the United States during the COVID-19 pandemic, and identify associations with socio-economic factors of populations.Design, Setting, and ParticipantsWe used anonymized mobility data from tens of millions of devices to measure the speed and depth of social distancing at the county level between February and May 2020. Using linear mixed models, we assessed the associations between social distancing and socio-economic variables, including the proportion of people below the poverty level, the proportion of Black people, the proportion of essential workers, and the population density.Main outcomes and ResultsWe find that the speed, depth, and duration of social distancing in the United States is heterogeneous. We particularly show that social distancing is slower and less intense in counties with higher proportions of people below the poverty level and essential workers; and in contrast, that social distancing is intense in counties with higher population densities and larger Black populations.Conclusions and relevanceSocio-economic inequalities appear to be associated with the levels of adoption of social distancing, potentially resulting in wide-ranging differences in the impact of COVID-19 in communities across the United States. This is likely to amplify existing health disparities, and needs to be addressed to ensure the success of ongoing pandemic mitigation efforts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corentin Cot ◽  
Giacomo Cacciapaglia ◽  
Francesco Sannino

AbstractWe employ the Google and Apple mobility data to identify, quantify and classify different degrees of social distancing and characterise their imprint on the first wave of the COVID-19 pandemic in Europe and in the United States. We identify the period of enacted social distancing via Google and Apple data, independently from the political decisions. Our analysis allows us to classify different shades of social distancing measures for the first wave of the pandemic. We observe a strong decrease in the infection rate occurring two to five weeks after the onset of mobility reduction. A universal time scale emerges, after which social distancing shows its impact. We further provide an actual measure of the impact of social distancing for each region, showing that the effect amounts to a reduction by 20–40% in the infection rate in Europe and 30–70% in the US.


Author(s):  
Niayesh Afshordi ◽  
Benjamin Holder ◽  
Mohammad Bahrami ◽  
Daniel Lichtblau

The SARS-CoV-2 pandemic has caused significant mortality and morbidity worldwide, sparing almost no community. As the disease will likely remain a threat for years to come, an understanding of the precise influences of human demographics and settlement, as well as the dynamic factors of climate, susceptible depletion, and intervention, on the spread of localized epidemics will be vital for mounting an effective response. We consider the entire set of local epidemics in the United States; a broad selection of demographic, population density, and climate factors; and local mobility data, tracking social distancing interventions, to determine the key factors driving the spread and containment of the virus. Assuming first a linear model for the rate of exponential growth (or decay) in cases/mortality, we find that population-weighted density, humidity, and median age dominate the dynamics of growth and decline, once interventions are accounted for. A focus on distinct metropolitan areas suggests that some locales benefited from the timing of a nearly simultaneous nationwide shutdown, and/or the regional climate conditions in mid-March; while others suffered significant outbreaks prior to intervention. Using a first-principles model of the infection spread, we then develop predictions for the impact of the relaxation of social distancing and local climate conditions. A few regions, where a significant fraction of the population was infected, show evidence that the epidemic has partially resolved via depletion of the susceptible population (i.e., “herd immunity”), while most regions in the United States remain overwhelmingly susceptible. These results will be important for optimal management of intervention strategies, which can be facilitated using our online dashboard.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd6370 ◽  
Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Jeffrey Shaman

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.


2021 ◽  
Author(s):  
Ashlynn R. Daughton ◽  
Courtney Diane Shelley ◽  
Martha Barnard ◽  
Dax Gerts ◽  
Chrysm Watson Ross ◽  
...  

BACKGROUND Health authorities can minimize the impact of an emergent infectious disease outbreak through effective and timely risk communication, which can build trust and adherence to subsequent behavioral messaging. Monitoring the psychological impacts of an outbreak, as well as public adherence to such messaging is also important for minimizing long term effects of an outbreak. OBJECTIVE We used social media data to identify human behaviors relevant to COVID-19 transmission and the perceived impacts of COVID-19 on individuals as a first step toward real time monitoring of public perceptions to inform public health communications. METHODS We develop a coding schema for 6 categories and 11 subcategories, which includes both a wide number of behaviors, as well codes focused on the impacts of the pandemic (e.g., economic and mental health impacts). We use this to develop training data and develop supervised learning classifiers for classes with sufficient labels. Classifiers that perform adequately are applied to our remaining corpus and temporal and geospatial trends are assessed. We compare the classified patterns to ground truth mobility data and actual COVID-19 confirmed cases to assess the signal achieved here. RESULTS We apply our labeling schema to ~7200 tweets. The worst performing classifiers have F1 scores of only 0.18-0.28 when trying to identify tweets about monitoring symptoms and testing. Classifiers about social distancing, however, are much stronger with F1 scores of 0.64-0.66. We applied the social distancing classifiers to over 228 million tweets. We show temporal patterns consistent with real-world events, and show correlations of up to -0.5 between social distancing signals on Twitter and ground-truth mobility throughout the United States. CONCLUSIONS Behaviors discussed on Twitter are exceptionally varied. Twitter can provide useful information for parameterizing models that incorporate human behavior as well as informing public health communication strategies by describing awareness of and compliance with suggested behaviors. CLINICALTRIAL N/A


2020 ◽  
Author(s):  
Paiheng Xu ◽  
Mark Dredze ◽  
David A Broniatowski

BACKGROUND Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. OBJECTIVE The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. METHODS We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. RESULTS We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. CONCLUSIONS We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning.


2019 ◽  
Vol 44 (4) ◽  
pp. 232-240 ◽  
Author(s):  
Anita Knopov ◽  
Michael Siegel ◽  
Ziming Xuan ◽  
Emily F Rothman ◽  
Shea W Cronin ◽  
...  

Abstract This study aimed to investigate the potential differential effects of state-level firearm laws on black and white populations. Using a panel design, authors examined the relationship between state firearm laws and homicide victimization rates among white people and black people in 39 states during the period between 1991 and 2016. Authors modeled homicide rates using linear regression with year and state fixed effects and controlled for a range of time-varying, state-level factors. Results showed that universal background check laws and permit requirement laws were associated with lower homicide rates among both white and black populations, and “shall issue” laws were associated with higher homicide rates among both white and black populations. Laws that prohibit firearm possession among people convicted of a violent misdemeanor or require relinquishment of firearms by people with a domestic violence restraining order were associated with lower black homicide rates, but not with white homicide rates. Author identification of heterogeneity in the associations between state firearm laws and homicide rates among different racial groups has implications for reducing racial health disparities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yixuan Pan ◽  
Aref Darzi ◽  
Aliakbar Kabiri ◽  
Guangchen Zhao ◽  
Weiyu Luo ◽  
...  

AbstractSince the first case of the novel coronavirus disease (COVID-19) was confirmed in Wuhan, China, social distancing has been promoted worldwide, including in the United States, as a major community mitigation strategy. However, our understanding remains limited in how people would react to such control measures, as well as how people would resume their normal behaviours when those orders were relaxed. We utilize an integrated dataset of real-time mobile device location data involving 100 million devices in the contiguous United States (plus Alaska and Hawaii) from February 2, 2020 to May 30, 2020. Built upon the common human mobility metrics, we construct a Social Distancing Index (SDI) to evaluate people’s mobility pattern changes along with the spread of COVID-19 at different geographic levels. We find that both government orders and local outbreak severity significantly contribute to the strength of social distancing. As people tend to practice less social distancing immediately after they observe a sign of local mitigation, we identify several states and counties with higher risks of continuous community transmission and a second outbreak. Our proposed index could help policymakers and researchers monitor people’s real-time mobility behaviours, understand the influence of government orders, and evaluate the risk of local outbreaks.


Sign in / Sign up

Export Citation Format

Share Document