The feasibility and effects of virtual-reality motor-cognitive training in community-dwelling older people with cognitive frailty: A pilot randomized controlled trial (Preprint)
BACKGROUND Cognitive frailty refers to the coexistence of physical frailty and cognitive impairment and is associated with many adverse health outcomes. While cognitive frailty is prevalent in older people, motor-cognitive training is effective at enhancing cognitive and physical function We propose a virtual reality (VR) simultaneous motor-cognitive training program, which allows older people to practice performing daily activities in a virtual space mimicking real environments. OBJECTIVE We aimed 1) to explore the feasibility of offering VR simultaneous motor-cognitive training to older people with cognitive frailty and 2) to compare its effects with an existing motor-cognitive training program in the community on the cognitive function and physical function of older people with cognitive frailty. METHODS A two-arm (1:1), assessor-blinded, parallel design, randomized controlled trial (RCT) was employed. The eligibility criteria for participants were: 1) age≥60 years, 2) community dwelling, and 3) with cognitive frailty. Those in the intervention group received cognitive training (i.e., cognitive games) and motor training (i.e., cycling on an ergometer) simultaneously on a VR platform, mimicking the daily living activities of older people. Those in the control group received cognitive training (i.e., cognitive games) on tablet computers and motor training (i.e., cycling on the ergometer) sequentially on a non-VR platform. Both groups received a 30-minute session twice a week for 8 weeks. Feasibility was measured by adherence, adverse outcomes, and successful learning. The outcomes were cognitive function, physical frailty level, and walking speed. RESULTS Seventeen participants were recruited and randomized into either the control group (n=8) or intervention group (n=9). At baseline, the median age was 74.0 years (IQR=9.5) and the median MoCA score was 20.0 (IQR=4.0). No significant between-group differences were found except in the number of chronic illnesses (P=0.043). At post-intervention, the intervention group (Z=-2.673, P=0.008) showed a significantly larger improvement in cognitive function than the control group (Z=-1.187, P=0.235). The reduction in physical frailty in the intervention group (Z=-1.730, P=0.084) was similar to that in the control group (Z=-1.890, P=0.059). The TUG-measured improvement in walking speed was moderate in the intervention group (Z=-0.159, P=0.110), and greater in the control group (Z=-2.521, P=0.012). The recruitment rate was acceptable (17/33, 51.5%). Both groups had a 100% attendance rate. The intervention group had a higher completion rate than the control group. Training was terminated for one participant (1/9, 11.1%) due to minimal VR sickness (VRSQ=18.3/100). Two participants (2/8, 25%) in the control group withdrew due to moderate leg pain. No injuries were observed in both groups. CONCLUSIONS This study provides preliminary evidence that the VR simultaneous motor-cognitive training group experienced greater improvement in cognitive function than the control group, and reduced frailty and improved walking speed. VR training is feasible and safe for older people with cognitive frailty. CLINICALTRIAL ClinicalTrials.gov NCT0446726