scholarly journals Validating a Machine Learning Algorithm to Predict 30-Day Re-Admissions in Patients With Heart Failure: Protocol for a Prospective Cohort Study (Preprint)

2017 ◽  
Author(s):  
Sujay Kakarmath ◽  
Sara Golas ◽  
Jennifer Felsted ◽  
Joseph Kvedar ◽  
Kamal Jethwani ◽  
...  

BACKGROUND Big data solutions, particularly machine learning predictive algorithms, have demonstrated the ability to unlock value from data in real time in many settings outside of health care. Rapid growth in electronic medical record adoption and the shift from a volume-based to a value-based reimbursement structure in the US health care system has spurred investments in machine learning solutions. Machine learning methods can be used to build flexible, customized, and automated predictive models to optimize resource allocation and improve the efficiency and quality of health care. However, these models are prone to the problems of overfitting, confounding, and decay in predictive performance over time. It is, therefore, necessary to evaluate machine learning–based predictive models in an independent dataset before they can be adopted in the clinical practice. In this paper, we describe the protocol for independent, prospective validation of a machine learning–based model trained to predict the risk of 30-day re-admission in patients with heart failure. OBJECTIVE This study aims to prospectively validate a machine learning–based predictive model for inpatient admissions in patients with heart failure by comparing its predictions of risk for 30-day re-admissions against outcomes observed prospectively in an independent patient cohort. METHODS All adult patients with heart failure who are discharged alive from an inpatient admission will be prospectively monitored for 30-day re-admissions through reports generated by the electronic medical record system. Of these, patients who are part of the training dataset will be excluded to avoid information leakage to the algorithm. An expected sample size of 1228 index admissions will be required to observe a minimum of 100 30-day re-admission events. Deidentified structured and unstructured data will be fed to the algorithm, and its prediction will be recorded. The overall model performance will be assessed using the concordance statistic. Furthermore, multiple discrimination thresholds for screening high-risk patients will be evaluated according to the sensitivity, specificity, predictive values, and estimated cost savings to our health care system. RESULTS The project received funding in April 2017 and data collection began in June 2017. Enrollment was completed in July 2017. Data analysis is currently underway, and the first results are expected to be submitted for publication in October 2018. CONCLUSIONS To the best of our knowledge, this is one of the first studies to prospectively evaluate a predictive machine learning algorithm in a real-world setting. Findings from this study will help to measure the robustness of predictions made by machine learning algorithms and set a realistic benchmark for expectations of gains that can be made through its application to health care. REGISTERED REPORT IDENTIFIER RR1-10.2196/9466

2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
T Uejima ◽  
J Cho ◽  
H Hayama ◽  
L Takahashi ◽  
J Yajima ◽  
...  

Abstract Background The assessment of diastolic function is still challenging in the setting of heart failure (HF). We tested the hypothesis that applying a machine learning algorithm would detect heterogeneity in diastolic function and improve risk stratification in HF population. Methods This study included consecutive 279 patients with clinically stable HF referred for echocardiographic assessment, for whom diastolic function variables were measured according to the current guidelines. Cluster analysis, an unsupervised machine learning algorithm, was undertaken on these variables to form homogeneous groups of patients with similar profiles of the variables. Sequential Cox models paralleling the clinical sequence of HF assessment were used to elucidate the benefit of cluster-based classification over guidelines-based classification. The primary endpoint was a hospitalization for worsening HF. Results Cluster analysis identified 3 clusters with distinct properties of diastolic function that shared similarities with guidelines-based classification. The clusters were associated with brain natriuretic peptide level (p < 0.001, figure A). During follow-up period of 2.6 ± 2.0 years, 62 patients (22%) experienced the primary endpoint. Cluster-based classification exhibited a significant prognostic value (c2 = 20.3, p < 0.001, figure B), independent from and incremental to an established clinical risk score for HF (MAGGIC score) and left ventricular end-diastolic volume (hazard ratio = 1.677, p = 0.017, model c2: from 47.5 to 54.1, p = 0.015, figure D). Although guideline-based classification showed a significant prognostic value (c2 = 13.1, p = 0.001, figure C), it did not significantly improve overall prognostication from the baseline (model c2: from 47.5 to 49.9, p = 0.199, figure D). Conclusion Machine learning techniques help grading diastolic function and stratifying the risk for decompensation in HF. Abstract 153 Figure.


2020 ◽  
Vol 17 (9) ◽  
pp. 4294-4298
Author(s):  
B. R. Sunil Kumar ◽  
B. S. Siddhartha ◽  
S. N. Shwetha ◽  
K. Arpitha

This paper intends to use distinct machine learning algorithms and exploring its multi-features. The primary advantage of machine learning is, a machine learning algorithm can predict its work automatically by learning what to do with information. This paper reveals the concept of machine learning and its algorithms which can be used for different applications such as health care, sentiment analysis and many more. Sometimes the programmers will get confused which algorithm to apply for their applications. This paper provides an idea related to the algorithm used on the basis of how accurately it fits. Based on the collected data, one of the algorithms can be selected based upon its pros and cons. By considering the data set, the base model is developed, trained and tested. Then the trained model is ready for prediction and can be deployed on the basis of feasibility.


2020 ◽  
Author(s):  
Angier Allen ◽  
Samson Mataraso ◽  
Anna Siefkas ◽  
Hoyt Burdick ◽  
Gregory Braden ◽  
...  

BACKGROUND Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. OBJECTIVE The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. METHODS Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care–III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). RESULTS The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, <i>P</i>=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, <i>P</i>=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, <i>P</i>=.006 and equal opportunity difference 0.074, <i>P</i><.001, respectively). CONCLUSIONS This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 143 ◽  
Author(s):  
J. Deepika ◽  
T. Senthil ◽  
C. Rajan ◽  
A. Surendar

With the greater development of technology and automation human history is predominantly updated. The technology movement shifted from large mainframes to PCs to cloud when computing the available data for a larger period. This has happened only due to the advent of many tools and practices, that elevated the next generation in computing. A large number of techniques has been developed so far to automate such computing. Research dragged towards training the computers to behave similar to human intelligence. Here the diversity of machine learning came into play for knowledge discovery. Machine Learning (ML) is applied in many areas such as medical, marketing, telecommunications, and stock, health care and so on. This paper presents reviews about machine learning algorithm foundations, its types and flavors together with R code and Python scripts possibly for each machine learning techniques.  


Sign in / Sign up

Export Citation Format

Share Document