Optimization of the Fermentation Conditions for 1-Deoxynojirimycin Production by Streptomyces lawendulae Applying the Response Surface Methodology

Author(s):  
Zhao-Jun Wei ◽  
Le-Chun Zhou ◽  
Hua Chen ◽  
Gui-Hai Chen

Moranoline (1-Deoxynojirimycin, DNJ) is a piperidine alkaloid, and shows high inhibit activities to glucoamylase and ?-glucosidase. One DNJ high-yield strain of Streptomyces lawendulae was obtained after isolated form soil and mutated with the ultra violet (UV) and ethyl sulfate (DES), which named as TB-412, and can produce DNJ with 35.925 mg/L. Response surface methodology (RSM) was applied to optimize the parameters of DNJ yield from S. lawendulae TB-412. The effects of independent variables of fermentation, including time, temperature, initial pH and the soluble starch content were investigated. The statistical analysis showed that the fermentation time, pH and the soluble starch content, and the quadratics of time, temperature, pH and the soluble starch content, as well as the interactions between fermentation time and pH, and time and the soluble starch content, showed significant effects on DNJ yield. The optimal process parameters for DNJ production within the experimental range of the variables researched was at 11d, 27 °C, pH 7.5, and 8% soluble starch content. At this condition, the DNJ yield was predicted to be 42.875 mg/L.

2015 ◽  
Vol 73 (4) ◽  
pp. 935-946
Author(s):  
Razieh Nikroo ◽  
Iran Alemzadeh ◽  
Manouchehr Vossoughi ◽  
Kamran Haddadian

In this study, degradation of trichloroethylene (TCE), a chlorinated hydrocarbon, using starch supported Fe/Ni nanoparticles was investigated. The scanning electron microscope images showed applying water soluble starch as a stabilizer for the Fe/Ni nanoparticles tended to reduce agglomeration and discrete particle. Also the mean particle diameter reduced from about 70 nm (unsupported Fe/Ni nanoparticle) to about 30 nm. Effects of three key independent operating parameters including initial TCE concentration (10.0–300.0 mg L−1), initial pH (4.00–10.00) and Fe0 dosage (0.10–2.00) g L−1 on TCE dechlorination efficiency in 1 hour were analysed by employing response surface methodology (RSM). Based on a five-level three-factor central composite design, TCE removal efficiency was examined and optimized. The obtained RSM model fitted the experimental data to a second order polynomial equation. The optimum dechlorination conditions at initial TCE concentration 100.0 mgL−1 were initial pH 5.77, Fe0 dosage 1.67 g L−1. At these conditions TCE removal concentration reached 94.87%, which is in close acceptance with predicted value by the RSM model.


2021 ◽  
Vol 21 (2) ◽  
pp. 118-128
Author(s):  
Beni Hidayat ◽  
Udin Hasanudin ◽  
Muhammad Muslihudin ◽  
Syamsu Akmal ◽  
Siti Nurdjanah ◽  
...  

The application of semi-solid fermentation has been able to increase the potential for using cassava pulp, an underused biomass from starch processing (tapioca), as foodstuffs which are reflected in an increase in protein content up to 7.07% and a decrease in cyanide content to less than 10 mg/kg (8.78 mg/kg). Further process optimization is required if the cassava pulp fermentation process is to be carried out on an industrial scale. This research was aimed to obtain the optimal fermentation process parameters to produce cassava pulp flour with optimal characteristics as foodstuffs. Optimization of the fermentation process was carried out using the Response Surface Methodology (RSM) with the Central Composite Design model. The optimization results using numerical methods show that the optimal characteristics of fermented cassava pulp flour is obtained in the process parameters: starter concentration 1.58-1.65%, ammonium sulphate concentration 1.00%, and fermentation time 75.01-82.53 hours. The optimal process parameters will produce fermented cassava pulp flour with a protein content of 6.40-6.60%, cyanide content of 7.24-7.61 mg/kg, starch content of 58.14-58.37%, dietary fiber content of 15.83-16.65% and an odour score of 4.50-4.53 (maximum score of 5, like very much) which is very potential to be used as foodstuffs.


2016 ◽  
Vol 74 (3) ◽  
pp. 564-579 ◽  
Author(s):  
Ceyhun Akarsu ◽  
Yasin Ozay ◽  
Nadir Dizge ◽  
H. Elif Gulsen ◽  
Hasan Ates ◽  
...  

Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box–Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5–15 V), initial pH (4.5–8.0) and time (30–90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R2 and Radj2 values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R2 values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage–time and pH–time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.


2015 ◽  
Vol 40 (6) ◽  
Author(s):  
İrem Deniz ◽  
Esra İmamoğlu ◽  
Meltem Conk Dalay

AbstractObjective: Physical process parameters play a major role in the cultivation of cyanobacteria to provide high yield. The aim of this study was to optimize physical parameters such as light intensity and agitation rate which might affect the phycobiliprotein formations for cyanobacterial strains of Oscillatoria agardhii and Synechococcus nidulans using response surface methodology.Methods: The cyanobacterial strains were cultured in 250 mL flasks containing 100 mL of EM medium in orbital shaking incubator under the temperature of 22±2°C at different light intensities and agitation rates for 10 days. The experimental design was carried out using 2Results: The optimization solution of O. agardhii (approximately at 156 rpm under the light intensity of 65 μmol photons mConclusion: High agitation rate stimulated the faster growth than increased the light intensity for the growths of cyanobacterial strains.


2016 ◽  
Vol 74 (9) ◽  
pp. 1999-2009 ◽  
Author(s):  
Sayed Mohammad Bagher Hosseini ◽  
Narges Fallah ◽  
Sayed Javid Royaee

This study evaluates the advanced oxidation process for decolorization of real textile dyeing wastewater containing azo and disperse dye by TiO2 and UV radiation. Among effective parameters on the photocatalytic process, effects of three operational parameters (TiO2 concentration, initial pH and aeration flow rate) were examined with response surface methodology. The F-value (136.75) and p-value <0.0001 imply that the model is significant. The ‘Pred R-Squared’ of 0.95 is in reasonable agreement with the ‘Adj R-Squared’ of 0.98, which confirms the adaptability of this model. From the quadratic models developed for degradation and subsequent analysis of variance (ANOVA) test using Design Expert software, the concentration of catalyst was found to be the most influential factor, while all the other factors were also significant. To achieve maximum dye removal, optimum conditions were found at TiO2 concentration of 3 g L−1, initial pH of 7 and aeration flow rate of 1.50 L min−1. Under the conditions stated, the percentages of dye and chemical oxygen demand removal were 98.50% and 91.50%, respectively. Furthermore, the mineralization test showed that total organic compounds removal was 91.50% during optimum conditions.


2011 ◽  
Vol 183-185 ◽  
pp. 994-998
Author(s):  
Shuo Dong ◽  
Nai Yu Chi ◽  
Qing Fang Zhang

The design of an optimum and cost-efficient medium for production of cold-active cellulase by Penicillium cordubense D28 was attempted by using response surface methodology (RSM). Based on the Plackett–Burman design, corn meal, (NH4)2SO4 and branc were selected as the most critical nutrient. Subsequently, they were investigated by the Box-Behnken design. Results showed that the maximum cold-active cellulase activity of 110.4U/mL was predicted when the concentration of corn meal, (NH4)2SO4 and branc were 21.97 g/L, 2.39 g/L and 14.99 g/L, respectively. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the respective corn meal, (NH4)2SO4 and branc concentration of 22 g/L , 2.4 g/L and 15 g/L , the initial pH of 6.0 and experimental temperature of 20 ± 1°C. Without further pH adjustment, the maximum cold-active cellulase activity of 109.8 U/mL was obtained based on the optimized medium with further verified the practicability of this optimum strategy.


2015 ◽  
Vol 737 ◽  
pp. 321-324
Author(s):  
Rong Yao Wang ◽  
Xi Kui Wang

The degradation of the pharmaceutical paracetamol by using Fenton-like process in conjunction with ultrasonic cavitation was investigated. An evident synergistic effect was found in the combination of sonication and Fenton-like process. Through the application of Response Surface Methodology optimization, the optimum conditions for the degradation of paracetamol were initial pH 3.0, H2O27.0 mmol·L-1and sponge iron 4 g·L-1with acoustic power of 200 W. Under these parameters could obtain 99% degradation of 100mg·L-1paracetamol solution within 30 min treatment.


2010 ◽  
Vol 62 (6) ◽  
pp. 1320-1326 ◽  
Author(s):  
Y. H. Gong ◽  
H. Zhang ◽  
Y. L. Li ◽  
L. J. Xiang ◽  
S. Royer ◽  
...  

A mesoporous SBA-15 doped iron oxide (Fe2O3/SBA-15) was synthesized by co-codensation, characterized and used as heterogeneous catalysts for the photo-Fenton decolorization of azo dye Orange II under UV irradiation. Response surface methodology (RSM) was used to investigate operating condition effects, such as hydrogen peroxide concentration, initial pH and catalyst loadings, on the decolorization rate. UV irradiation is found to enhance the activity of the catalyst in the process. RSM analysis evidenced the influence of the initial pH value and H2O2 concentration on the dye degradation rate. The coupled UV/Fe2O3/SBA-15/H2O2 process at room temperature is revealed as a promising friendly process for wastewater treatment. Indeed, the use of a heterogeneous catalyst allows an easy active phase recycling without multi-step recovering while the heterogeneous catalyst used here exhibits high catalytic activity for the reaction considered.


2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.


2014 ◽  
Vol 955-959 ◽  
pp. 848-854
Author(s):  
Yin Xiang Gao ◽  
Lei Yang ◽  
Yuan Gang Zu ◽  
Li Ping Yao

An ultrasound-assisted procedure for the extraction of pectin from heads ofHelianthus annuusL. (sunflower) was established. A Box–Behnken design (BBD) was employed to optimize the extraction temperature (X1: 30–50°C), extraction time (X2: 20–40 min) and pH (X3: 2.5–3.5) to obtain a high yield of pectin with high degree of esterification (DE) from sunflower heads. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and DE. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (23.11 ± 0.08%) and DE (39.85 ± 0.14%) can be achieved when the UAE process is carried out at 50°C for 40min using a hydrochloric acid solution of pH 3.0. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectin from sunflower heads at industrial level.


Sign in / Sign up

Export Citation Format

Share Document