Prediction of Deposition Patterns in a Pilot-Scale Spray Dryer Using Computational Fluid Dynamics (CFD) Simulations

Author(s):  
Kashinath Kota ◽  
Tim Langrish

This paper presents the predictions of deposition patterns using CFD simulations based on transient-flow behaviour of a 1.6 m high, 0.8 m diameter, pilot-scale spray dryer, following from previous studies assessing the use of Computational Fluid Dynamics (CFD) simulations to predict the deposition on a plate in a simple box configuration. The predicted deposition fluxes here have been compared with experimental data for the deposition fluxes of skim milk, maltodextrin and water. The CFD simulation results suggested that the effect of transient air flows on the vertical patterns of deposition fluxes with distance up the dryer wall for no inlet air swirl is small. The CFD simulations underpredicted the experimental values of the deposition fluxes by approximately 50%, but the simulations predicted the same experimental trends when changing the main air flow rate through the dryer. The experimentally-measured deposition fluxes were 38%, on average, higher at a main air flow rate of 113 kg/h compared with those at a flow rate of 88 kg/h. The CFD simulations predicted an average increase in deposition flux of 26% at 113 kg/h compared with 88 kg/h, so the trends with this change in operating conditions have been predicted well by the CFD simulations. One-way particle coupling has therefore shown correct trends in the deposition fluxes with respect to both positions in the dryer and different operating conditions, and such one-way coupling is several orders of magnitude faster than the more rigorous two-way coupling.

Author(s):  
Tim Langrish ◽  
Kashinath Kota

The deposition rates for a water spray on a plate have been studied in a rectangular box configuration to determine the effects of turbulence and droplet size in a relatively simple geometrical configuration, with the aim being to assess the ability of a CFD simulation to predict the actual wall deposition fluxes and the trends in these fluxes in such a geometry. The main air velocities that were used in this study were 1 m/s and 2 m/s inside the box. The results from the Computational Fluid Dynamics (CFD) simulations underpredicted the percentage deposition on the plate significantly (by about 75% and lower) compared with the experiments. The droplet size effects on the deposition rates were studied by varying the atomizer air pressure (air flow rate). The inlet turbulence level was changed by placing a mesh at the box inlet. The results of experiments and simulations showed similar trends when decreasing the droplet size. Increasing the turbulence intensity at the box inlet seems to result in underpredicting the actual amounts of deposition, since the movements of the fine droplets are not well predicted by RANS approaches, because the RANS approaches do not predict the gas-phase turbulence levels near the walls well. The other reasons for the underprediction in the simulations could be coalescence of droplets in the spray, dispersion of droplets due to turbulence and radial variations in droplet velocities and sizes in the spray.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


2014 ◽  
Vol 9 (1) ◽  
pp. 15-24
Author(s):  
Maryam Sadripour ◽  
Amir Rahimi ◽  
Mohammad Sadegh Hatamipour

Abstract The performance of a pilot-scale spray dryer is investigated experimentally and theoretically. The governing equations for flow field, heat and mass transfer, and particle trajectory are solved by applying computational fluid dynamics (CFD). The effects of inlet air temperature and initial particle diameter on the outlet humidity and particle residence time are examined. These parameters should be considered carefully in proper designing of spray dryers especially for the heat-sensitive products. The model is validated with an error of 5.5%.


2008 ◽  
Vol 5 (28) ◽  
pp. 1291-1301 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Peter Aerts

Most theoretical models of unsteady aquatic movement in organisms assume that including steady-state drag force and added mass approximates the hydrodynamic force exerted on an organism's body. However, animals often perform explosively quick movements where high accelerations are realized in a few milliseconds and are followed closely by rapid decelerations. For such highly unsteady movements, the accuracy of this modelling approach may be limited. This type of movement can be found during pivot feeding in pipefish that abruptly rotate their head and snout towards prey. We used computational fluid dynamics (CFD) to validate a simple analytical model of cranial rotation in pipefish. CFD simulations also allowed us to assess prey displacement by head rotation. CFD showed that the analytical model accurately calculates the forces exerted on the pipefish. Although the initial phase of acceleration changes the flow patterns during the subsequent deceleration phase, the accuracy of the analytical model was not reduced during this deceleration phase. Our analysis also showed that prey are left approximately stationary despite the quickly approaching pipefish snout. This suggests that pivot-feeding fish need little or no suction to compensate for the effects of the flow induced by cranial rotation.


2021 ◽  
Author(s):  
Darren Jia

Diabolo is a popular game in which the object can be spun at up to speeds of 5000 rpm. This high spin velocity gives the diabolo the necessary angular momentum to remain stable. The shape of the diabolo generates an interesting air flow pattern. The viscous air applies a resistive torque on the fast spinning diabolo. Through computational fluid dynamics (CFD) simulations it's shown that the resistive torque has an interesting dependence on the angular speed of the diabolo. Further, the geometric shape of the diabolo affects the dependence of torque on angular speed.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 73 ◽  
Author(s):  
Galih Bangga

The present studies deliver the computational investigations of a 10 MW turbine with a diameter of 205.8 m developed within the framework of the AVATAR (Advanced Aerodynamic Tools for Large Rotors) project. The simulations were carried out using two methods with different fidelity levels, namely the computational fluid dynamics (CFD) and blade element and momentum (BEM) approaches. For this purpose, a new BEM code namely B-GO was developed employing several correction terms and three different polar and spatial interpolation options. Several flow conditions were considered in the simulations, ranging from the design condition to the off-design condition where massive flow separation takes place, challenging the validity of the BEM approach. An excellent agreement is obtained between the BEM computations and the 3D CFD results for all blade regions, even when massive flow separation occurs on the blade inboard area. The results demonstrate that the selection of the polar data can influence the accuracy of the BEM results significantly, where the 3D polar datasets extracted from the CFD simulations are considered the best. The BEM prediction depends on the interpolation order and the blade segment discretization.


Author(s):  
Mathias Vermeulen ◽  
Cedric Van Holsbeke ◽  
Tom Claessens ◽  
Jan De Backer ◽  
Peter Van Ransbeeck ◽  
...  

An experimental and numerical platform was developed to investigate the fluidodynamics in human airways. A pre operative patient specific geometry was used to create an identical experimental and numerical model. The experimental results obtained from Particle Image Velocimetry (PIV) measurements were compared to Computational Fluid Dynamics (CFD) simulations under stationary and pulsatile flow regimes. Together these results constitute the first step in predicting the clinical outcome of patients after lung surgeries such as Lung Volume Reduction.


Sign in / Sign up

Export Citation Format

Share Document