scholarly journals Modeling of Respiratory System Dysfunction among Nuclear Workers: A Preliminary Study

Dose-Response ◽  
2008 ◽  
Vol 6 (4) ◽  
pp. dose-response.0 ◽  
Author(s):  
Z.D. Belyaeva ◽  
S.V. Osovets ◽  
B.R. Scott ◽  
G.V. Zhuntova ◽  
E.S. Grigoryeva

Numerous studies have reported on cancers among Mayak Production Association (PA) nuclear workers. Other studies have reported on serious deterministic effects of large radiation doses for the same population. This study relates to deterministic effects (respiratory system dysfunction) in Mayak workers after relatively small chronic radiation doses (alpha plus gamma). Because cigarette smoke is a confounding factor, we also account for smoking effects. Here we present a new empirical mathematical model that was introduced for simultaneous assessment of radiation and cigarette-smoking-related damage to the respiratory system. The model incorporates absolute thresholds for smoking- and radiation-induced respiratory system dysfunction. As the alpha radiation dose to the lung increased from 0 to 4.36 Gy, respiratory function indices studied decreased, although remaining in the normal range. The data were consistent with the view that alpha radiation doses to the lung above a relatively small threshold (0.15 to 0.39 Gy) cause some respiratory system dysfunction. Respiratory function indices were not found to be influenced by total-body gamma radiation doses in the range 0–3.8 Gy when delivered at low rates over years. However, significant decreases in airway conductance were found to be associated with cigarette smoking. Whether the indicated cigarette smoking and alpha radiation associated dysfunction is debilitating is unclear.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zhonghua Sun ◽  
Aini AbAziz ◽  
Ahmad Khairuddin Md Yusof

Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted.


2013 ◽  
Vol 42 (8) ◽  
pp. 1173-1177 ◽  
Author(s):  
Shuji Nagata ◽  
Robert K. Shen ◽  
Nadia N. Laack ◽  
Carrie Y. Inwards ◽  
Doris E. Wenger ◽  
...  

2016 ◽  
Vol 124 (6) ◽  
pp. 1780-1787 ◽  
Author(s):  
Zhenjun Zhao ◽  
Michael S. Johnson ◽  
Biyi Chen ◽  
Michael Grace ◽  
Jaysree Ukath ◽  
...  

OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation causes remarkable cellular changes in endothelial cells. Significant PS externalization is induced by radiation at doses of 15 Gy or higher, concomitant with a block in the cell cycle. Radiation-induced markers/targets may have high discriminating power to be harnessed in vascular targeting for AVM treatment.


2021 ◽  
Vol 94 (1126) ◽  
pp. 20210436 ◽  
Author(s):  
Beth A. Schueler ◽  
Kenneth A Fetterly

Data suggest that radiation-induced cataracts may form without a threshold and at low-radiation doses. Staff involved in interventional radiology and cardiology fluoroscopy-guided procedures have the potential to be exposed to radiation levels that may lead to eye lens injury and the occurrence of opacifications have been reported. Estimates of lens dose for various fluoroscopy procedures and predicted annual dosages have been provided in numerous publications. Available tools for eye lens radiation protection include accessory shields, drapes and glasses. While some tools are valuable, others provide limited protection to the eye. Reducing patient radiation dose will also reduce occupational exposure. Significant variability in reported dose measurements indicate dose levels are highly dependent on individual actions and exposure reduction is possible. Further follow-up studies of staff lens opacification are recommended along with eye lens dose measurements under current clinical practice conditions.


2021 ◽  
Vol 18 (3) ◽  
pp. 560-568
Author(s):  
E. V. Bragin ◽  
T. V. Azizova ◽  
M. V. Bannikova ◽  
A. G. Grinyov

Objective: The study was aimed to estimate primary glaucoma incidence in a cohort of nuclear workers occupationally exposed to ionizing radiation over prolonged periods.Materials and methods. The cohort considered in the study included workers of the Mayak Production Association. All glaucoma cases that were reported in the study worker cohort regardless of its type were identified using the medical and dosimetry database ‘Clinic’. Statistical analyses were performed to estimate non-standardized (crude) and standardized incidence rates for primary glaucoma. Standardization was carried out indirectly using age distribution for the whole cohort as an internal reference. Incidence rates were estimated per 1000 person-years in accordance with conventional medical statistics.Results. At the end of the follow-up period, 476 primary glaucoma cases were reported in the study worker cohort over 482,217 person-years of the follow-up. The standardized primary glaucoma incidence was estimated to be 1.00 ± 0.05 in males and 0.70 ± 0.07 in females. Crude primary glaucoma estimates in both males and females increased with the increasing attained age of the workers. Crude incidence rates in males were significantly higher than in females for age 50–69. The standardized primary glaucoma incidence in males was also significantly increased compared to females. The standardized primary glaucoma incidence rates were increasing throughout the period from 1960s to the end of the follow-up.


2021 ◽  
Vol 27 ◽  
Author(s):  
Yasuhiro Terasaki ◽  
Mika Terasaki ◽  
Akira Shimizu

: Radiation-induced lung injury is characterized by an acute pneumonia phase followed by a fibrotic phase. At the time of irradiation, a rapid, short-lived burst of reactive oxygen species (ROS) such as hydroxyl radicals (•OH) occurs, but chronic radiation-induced lung injury may occur due to excess ROS such as H2O2 , O2•− , ONOO− , and •OH. Molecular hydrogen (H2 ) is an efficient antioxidant that quickly diffuses cell membranes, reduces ROS such as •OH and ONOO− , and suppresses damage caused by oxidative stress in various organs. In 2011, through the evaluation of electron-spin resonance and fluorescent indicator signals, we had reported that H2 can eliminate •OH and can protect against oxidative stress-related apoptotic damage induced by irradiation of cultured lung epithelial cells. We had explored for the first time the radioprotective effects of H2 treatment on acute and chronic radiation-induced lung damage in mice by inhaled H2 gas (for acute) and imbibed H2 -enriched water (for chronic). Thus, we had proposed that H2 be considered a potential radioprotective agent. Recent publications have shown that H2 directly neutralizes highly reactive oxidants and indirectly reduces oxidative stress by regulating the expression of various genes. By regulating gene expression, H2 functions as an anti-inflammatory and anti-apoptotic molecule and promotes energy metabolism. The increased evidence obtained from cultured cells or animal experiments reveal a putative place for H2 treatment and its radioprotective effect clinically. This review focuses on major scientific advances of in the treatment of H2 as a new class of radioprotective agents.


Dose-Response ◽  
2008 ◽  
Vol 7 (2) ◽  
pp. dose-response.0 ◽  
Author(s):  
Bobby R. Scott ◽  
Steven A. Belinsky ◽  
Shuguang Leng ◽  
Yong Lin ◽  
Julie A. Wilder ◽  
...  

Humans are continuously exposed to low-level ionizing radiation from natural sources. However, harsher radiation environments persisted during our planet's early years and mammals survived via an evolutionary gift - a system of radiation-induced natural protective measures (adaptive protection). This system includes antioxidants, DNA repair, apoptosis of severely damaged cells, epigenetically regulated apoptosis ( epiapoptosis) pathways that selectively remove precancerous and other aberrant cells, and immunity against cancer. We propose a novel model in which the protective system is regulated at least in part via radiation-stress-stimulated epigenetic reprogramming (epireprogramming) of adaptive-response genes. High-dose radiation can promote epigenetically silencing of adaptive-response genes ( episilencing), for example via promoter-associated DNA and/or histone methylation and/or histone deacetylation. Evidence is provided for low linear-energy-transfer (LET) radiation-activated natural protection (ANP) against high-LET alpha-radiation-induced lung cancer in plutonium-239 exposed rats and radon-progeny-exposed humans. Using a revised hormetic relative risk model for cancer induction that accounts for both epigenetic activation ( epiactivation) and episilencing of genes, we demonstrate that, on average, >80% of alpha-radiation-induced rat lung cancers were prevented by chronic, low-rate gamma-ray ANP. Interestingly, lifetime exposure to residential radon at the Environmental Protection Agency's action level of 4 pCi L−1 appears to be associated with on average a > 60% reduction in lung cancer cases, rather than an increase. We have used underlined italics to indicate newly introduced terminology.


2014 ◽  
Vol 2014 ◽  
pp. 1-3
Author(s):  
Maira Elizabeth Herz-Ruelas ◽  
Minerva Gómez-Flores ◽  
Joaquín Moxica-del Angel ◽  
Ivett Miranda-Maldonado ◽  
Ilse Marilú Gutiérrez-Villarreal ◽  
...  

Cases of radiation-induced skin injury after fluoroscopically guided procedures have been reported since 1996, though the majority of them have been published in Radiology and Cardiology literature, less frequently in Dermatology journals. Chronic radiation dermatitis induced by fluoroscopy can be difficult to diagnose; a high grade of suspicion is required. We report a case of an obese 46-year-old man with hypertension, dyslipidemia, and severe coronary artery disease. He developed a pruritic and painful atrophic ulcerated skin plaque over his left scapula, six months after fluoroscopically guided stent implantation angioplasty. The diagnosis of radiodermatitis was confirmed histologically. We report this case to emphasize the importance of recognizing fluoroscopy as a cause of radiation dermatitis. A good clinical follow-up at regular intervals is important after long and complicated procedures, since the most prevalent factor for injury is long exposure time.


Sign in / Sign up

Export Citation Format

Share Document