scholarly journals Redistribution of residual stress caused by crack propagation initially through residual compressive stress field.

1986 ◽  
Vol 4 (3) ◽  
pp. 634-639 ◽  
Author(s):  
Yoshihiko Mukai ◽  
Arata Nishimura ◽  
Eung-Joon Kim
2011 ◽  
Vol 189-193 ◽  
pp. 3755-3758
Author(s):  
Yin Fang Jiang ◽  
Zhi Fei Li ◽  
Jian Wen Zhang ◽  
Lei Fang

Laser shock processing (LSP) is a new technique for surface strengthening of fastener holes. The process of LSP before hole-drilling was adopted. A finite element model was established to study the effects of laser shock parameters on the residual stress field of aluminum alloy7050T7451 with Fastener Holes. The results indicate that increasing the laser power density until a fixed value results in a large peak in the hole-edge surface residual compressive stress. The hole-edge surface residual compressive stress and the depth of residual compressive stress are both increased with the increase of laser pulse width. Multiple laser shock processing can improve the residual compressive stress greatly, and with the increasing number of shot, the strengthening effect is gradually diminished.


2012 ◽  
Vol 463-464 ◽  
pp. 1363-1367
Author(s):  
M.L. Zhang ◽  
J.M. Wang ◽  
Y.F. Jiang ◽  
Q.L. Zhang ◽  
Q.L. Zhou

The solution treatment and solution and aging treatment (T6) were disposed on 7050 aluminium alloy, then local processed by laser shock processing (LSP) with high-rate neodymium glass laser. The microhardness and residual stress on the surface of 7050 aluminium alloy were tested, then how the microstructure influences the residual stress on the surface of 7050 aluminium alloy by laser shock processing was analysed. The results show that the microhardness and residual compressive stress on the surface of 7050 aluminium alloy treated by solution and aging treatment was higher, and decreased obviously treated by solution treatment; the microhardness and residual compressive stress on the surface of 7050 aluminium alloy increased obviously by solution treatment and solution and aging treatment after laser shock processing; treated by solution treatment and solution and aging treatment, the microhardness and residual compressive stress of the material with uniform original structure was higher than the material with nonuniform original structure.


Author(s):  
Tao Mo ◽  
Jingqing Chen ◽  
Pengju Zhang ◽  
Wenqian Bai ◽  
Xiao Mu ◽  
...  

Ultrasonic impact treatment (UIT) is an effective method that has been widely applied in welding structure to improve the fatigue properties of materials. It combines mechanical impact and ultrasonic vibration to produce plastic deformation on the weld joints surface, which introduces beneficial compressive residual stress distribution. To evaluate the effect of UIT technology on alleviating the residual stress of welded joints, a novel numerical analysis method based on the inherent strain theory is proposed to simulate the stress superposition of welding and subsequent UIT process of 304 stainless steel. Meanwhile, the experiment according to the process was carried out to verify the simulation of residual stress values before and after UIT. By the results, optimization of UIT application could effectively reduce the residual stress concentration after welding process. Residual tensile stress of welded joints after UIT is transformed into residual compressive stress. UIT formed a residual compressive stress layer with a thickness of about 0.13 mm on the plate. The numerical simulation results are consistent with the experimental results. The work in this paper could provide theoretical basis and technical support for the reasonable evaluation of the ultrasonic impact on residual stress elimination and mechanical properties improvement of welded joints.


2019 ◽  
Vol 9 (17) ◽  
pp. 3511 ◽  
Author(s):  
Kangmei Li ◽  
Yifei Wang ◽  
Yu Cai ◽  
Jun Hu

Laser peen texturing (LPT) is a novelty way of surface texturing based on laser shock processing. One of the most important benefits of LPT is that it can not only fabricate surface textures but also induce residual compressive stress for the target material. However, the residual stress loss leads to partial loss of residual compressive stress and even causes residual tensile stress at the laser spot center. This phenomenon is not conducive to improving the mechanical properties of materials. In this study, a numerical simulation model of LPT was developed and validated by comparison of surface deformation with experiments. In order to investigate the phenomenon of residual stress loss quantitatively, an evaluation method of residual stress field was proposed. The effects of laser power density and laser spot radius on the residual stress, especially the residual stress loss, were systematically investigated. It is found that with the increase of laser power density or laser spot radius, the thickness of residual compressive layer in depth direction becomes larger. However, both the magnitude and the affecting zone size of residual stress loss will be increased, which implies a more severe residual stress loss phenomenon.


Author(s):  
Xiang Ling ◽  
Weiwei Peng

The present paper established a non-linear elastic-plastic finite element method to predict the residual compressive stress distribution induced by Laser Peening (LP) in the AISI 304 stainless steel. The two dimensional FEA model considered the dynamic material properties at high strain rate (106/s) and the evaluation of loading conditions. Effects of laser power density, laser spot size, laser pulse duration, multiple LP processes and one/two-sided peening on the compressive stress field in the stainless steel were evaluated for the purpose of optimizing the process. Numerical results have a good agreement with the measurement values by X-ray diffraction method and also show that the magnitude of compressive stress induced by laser peening is greater than the tensile welding residual stress. So, laser peening is an effective method for protecting weldments against stress corrosion crack. The above results provide the basis for studying the mechanism on prevention of stress corrosion cracking in weld joint of type 304 stainless steel by laser peening.


2013 ◽  
Vol 2013.26 (0) ◽  
pp. _2712-1_-_2712-3_
Author(s):  
Kota SUGAWARA ◽  
Hirohito KOYA ◽  
Hiroshi OKADA ◽  
Hiroshi KAWAI ◽  
Yinsheng LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document