Application of the Steady-State Chloride Migration Test for Evaluating Chloride Ingress into Fly Ash Concrete.

2002 ◽  
pp. 191-203 ◽  
Author(s):  
Takafumi SUGIYAMA ◽  
Sorn VIRA ◽  
Yukikazu TSUJI ◽  
Takeshi OSHIRO
2021 ◽  
Vol 13 (17) ◽  
pp. 9519
Author(s):  
Fahad ul Rehman Abro ◽  
Abdul Salam Buller ◽  
Tariq Ali ◽  
Zain Ul-Abdin ◽  
Zaheer Ahmed ◽  
...  

Concrete is a popular building material all over the world, but because of different physiochemical processes, it is susceptible to crack development. One of the primary deterioration processes of reinforced concrete buildings is corrosion of steel bars within the concrete through these cracks. In this regard, a self-healing technique for crack repair would be the best solution to reduce the penetration of chloride ions inside concrete mass. In this study, a rapid chloride migration (RCM) test was conducted to determine the self-healing capacity of cracked mortar. With the help of the RCM test, the steady-state migration coefficient of cracked and uncracked specimens incorporating expansive and crystalline admixtures was calculated. Based on the rate of change of the chloride ion concentrations in the steady-state condition, the migration coefficient was calculated. Furthermore, bulk electrical conductivity tests were also conducted before and after the migration test to understand the self-healing behavior. It was evident from the test results that the self-healing of cracks was helpful to reduce the penetration of chloride ions and that it enhanced the ability of cracked mortar to restrict the chloride ingress. Using this test method, the self-healing capacity of the new self-healing technologies can be evaluated. The RCM test can be an acceptable technique to assess the self-healing ability of cement-based materials in a very short period, and the self-healing capacity can be characterized in terms of the decrease of chloride migration coefficients.


2016 ◽  
Vol 711 ◽  
pp. 21-28
Author(s):  
Francisco J. Presuel-Moreno

The performance with regard to chloride penetration of specimens made with three base compositions (supplementary cementitious materials: 20% fly ash, 20% fly ash + 8% silica fume, and 50% slag replacement by weight of cement), and water-to-cementitious ratios of 0.35, 0.41, or 0.47 were investigated here. In this investigation, laboratory experiments were carried out to study the correlation between electrical resistivity and non-steady state chloride ion migration coefficients (Dnssm) of concrete. NT Build 492 was used to determine chloride migration coefficients. Rapid migration tests and resistivity measurements were performed several times over two years, and the non-steady state migration coefficient (Dnssm) vs. resistivity values were correlated. Experimental results show that a good correlation was found between electrical resistivity and Dnssm. Based on the relationships developed from this investigation, it appears that the correlations are age and composition dependent.


2019 ◽  
Vol 104 ◽  
pp. 103371
Author(s):  
Kunjie Fan ◽  
Dawang Li ◽  
Nattapong Damrongwiriyanupap ◽  
Long-yuan Li

Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert De Schutter

Abstract Experimental and numerical results of a chloride ingress study conducted on samples drilled from different locations of a reinforced concrete slab, previously loaded until failure, are presented. The experimental part was carried on following the NT Build 492 standard for the non-steady state migration test, then a 3D model was developed using the Abaqus/Standard software based on the FEM in order to simulate chloride ingress in both uncracked and cracked concrete.


Sign in / Sign up

Export Citation Format

Share Document