scholarly journals DRAINED SHEAR CHARACTERISTICS OF STANDARD SAND UNDER HIGH CONFINING PRESSURES

1971 ◽  
Vol 1971 (193) ◽  
pp. 69-79 ◽  
Author(s):  
Norihiko Miura ◽  
Toyotoshi Yamanouchi
1970 ◽  
Vol 7 (1) ◽  
pp. 62-68 ◽  
Author(s):  
N. A. Skermer ◽  
S. F. Hillis

Comparison of typical results from drained triaxial tests carried out at confining pressures of 50 and 350 p.s.i. (3.52 and 24.61 kg/cm2) on four cohesionless soils are presented.The effect of gradation at constant relative density is explored, and it is concluded that there is an optimum gradation in terms of both high ultimate strength and high mobilized strength. Uniform coarse gravel is shown to have poor mobilized strength, but at confining pressures high enough to cause particle crushing the improvement in gradation and packing leads to a high ultimate strength, although large axial strains are necessarily induced. The optimum gradation is shown to be close to Fuller's curve for maximum density. The effect of increasing the confining pressure from 50 to 350 p.s.i. (3.52 to 24.61 kg/cm2) leads to a decrease in [Formula: see text] peak of 6 to 10°, but modifications for dilatancy lead to [Formula: see text] parameters that are sensibly constant for any one material.


Author(s):  
Yang Wu

A vast amount of past experimental examinations reported that the internal peak angle of sand was jointly affected by the density and effective stress level. Several relationships were proposed between these elements. The dependence of dilatancy characteristics on the internal state of a granular material was examined and revealed. A simple constitutive model framework was established on a basis of several well-proven and experienced relationships for granular materials to simulate their undrained shear behavior. A basic hardening law connecting the varying tendency of the stress ratio with shear strain was employed. This model is capable of predicting the undrained monotonic stress-strain relationship of granular materials at different densities and various confining pressures. A series of parametric studies are conducted to investigate the susceptibility of the simulation results to the selected parameters. The simulation results also confirm the influential influences of dilatancy and deformability on the shear characteristics of granular materials at the critical state.


2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cheng-Cheng Zhang ◽  
Bin Shi ◽  
Song Zhang ◽  
Kai Gu ◽  
Su-Ping Liu ◽  
...  

AbstractVertical deformation profiles of subterranean geological formations are conventionally measured by borehole extensometry. Distributed strain sensing (DSS) paired with fiber-optic cables installed in the ground opens up possibilities for acquiring high-resolution static and quasistatic strain profiles of deforming strata, but it is currently limited by reduced data quality due to complicated patterns of interaction between the buried cables and their surroundings, especially in upper soil layers under low confining pressures. Extending recent DSS studies, we present an improved approach using microanchored fiber-optic cables—designed to optimize ground-to-cable coupling at the near surface—for strain determination along entire lengths of vertical boreholes. We proposed a novel criterion for soil–cable coupling evaluation based on the geotechnical bearing capacity theory. We applied this enhanced methodology to monitor groundwater-related vertical motions in both laboratory and field experiments. Corroborating extensometer recordings, acquired simultaneously, validated fiber optically determined displacements, suggesting microanchored DSS as an improved means for detecting and monitoring shallow subsurface strain profiles.


Author(s):  
F Li ◽  
V M Puri

A medium pressure (<21 MPa) flexible boundary cubical triaxial tester was designed to measure the true three-dimensional response of powders. In this study, compression behaviour and strength of a microcrystalline cellulose powder (Avicel® PH102), a spray-dried alumina powder (A16SG), and a fluid-bed-granulated silicon nitride based powder (KY3500) were measured. To characterize the mechanical behaviour, three types of triaxial stress paths, that is, the hydrostatic triaxial compression (HTC), the conventional triaxial compression (CTC), and the constant mean pressure triaxial compression (CMPTC) tests were performed. The HTC test measured the volumetric response of the test powders under isostatic pressure from 0 to 13.79MPa, during which the three powders underwent a maximum volumetric strain of 40.8 per cent for Avicel® PH102, 30.5 per cent for A16SG, and 33.0 per cent for KY3500. The bulk modulus values increased 6.4-fold from 57 to 367MPa for Avicel® PH102, 3.7-fold from 174 to 637 MPa for A16SG, and 8.1-fold from 74 to 597MPa for KY3500, when the isotropic stress increased from 0.69 to 13.79 MPa. The CTC and CMPTC tests measured the shear response of the three powders. From 0.035 to 3.45MPa confining pressure, the shear modulus increased 28.7-fold from 1.6 to 45.9MPa for Avicel® PH102, 35-fold from 1.7 to 60.5MPa for A16SG, and 28.5-fold from 1.5 to 42.8MPa for KY3500. In addition, the failure stresses of the three powders increased from 0.129 to 4.41 MPa for Avicel® PH102, 0.082 to 3.62 MPa for A16SG, and 0.090 to 4.66MPa for KY3500, respectively, when consolidation pressure increased from 0.035 to 3.45MPa. In addition, the shear modulus and failure stress values determined from the CTC test at 2.07, 2.76, and 3.45MPa confining pressures are consistently greater than those from the CMPTC test at the same constant mean pressures. This observation demonstrates the influence of stress paths on material properties. The CTT is a useful tool for characterizing the three-dimensional response of powders and powder mixtures.


1993 ◽  
Vol 115 (4) ◽  
pp. 678-685 ◽  
Author(s):  
M. J. Braun ◽  
F. K. Choy ◽  
Y. M. Zhou

The flow in a hydrostatic pocket is described by a mathematical model that uses the Navier-Stokes equations written in terms of the primary variables, u, v, and p. Using the conservative formulation, a finite difference method is applied through a staggered grid. The power law scheme is applied in the treatment of the convective terms for this highly recirculating flow. The discussion pertaining to the convergence of the numerical scheme and the computational error, shows that the strict convergence criteria applied to both velocities and pressure were successfully statisfied. The numerical model is applied in a parametric mode to the study of the velocities, the pressure patterns, and shear forces that characterize the flow in a square (α = 1), deep (α>1), and shallow (α≪1) hydrostatic pocket. The effects of the variation of the location and angle of the hydrostatic jet are also investigated.


Sign in / Sign up

Export Citation Format

Share Document