scholarly journals DEVELOPMENT OF FLOOD DAMAGE FUNCTIONS BASED ON INSURANCE LOSS DUE TO 2015 KANTO-TOHOKU HEAVY RAINFALL

Author(s):  
Rikito HISAMATSU ◽  
Ken KAWABE ◽  
Yusuke MIZUNO ◽  
Yoshinobu SHINOZUKA ◽  
Kei HORIE
2019 ◽  
Vol 7 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Rikito HISAMATSU ◽  
Ken KAWABE ◽  
Yusuke MIZUNO ◽  
Yoshinobu SHINOZUKA ◽  
Kei HORIE

2019 ◽  
Author(s):  
Matteo U. Parodi ◽  
Alessio Giardino ◽  
Ap van Dongeren ◽  
Stuart G. Pearson ◽  
Jeremy D. Bricker ◽  
...  

Abstract. Considering the likely increase of coastal flooding in Small Island Developing States (SIDS), coastal managers at the local and global level have been developing initiatives aimed at implementing Disaster Risk Reduction (DRR) measures and adapting to climate change. Developing science-based adaptation policies requires accurate coastal flood risk (CFR) assessments, which are often subject to the scarcity of sufficiently accurate input data for insular states. We analysed the impact of uncertain inputs on coastal flood damage estimates, considering: (i) significant wave height, (ii) storm surge level and (iii) sea level rise (SLR) contributions to extreme sea levels, as well as the error-driven uncertainty in (iv) bathymetric and (v) topographic datasets, (vi) damage models and (vii) socioeconomic changes. The methodology was tested through a sensitivity analysis using an ensemble of hydrodynamic models (XBeach and SFINCS) coupled with an impact model (Delft-FIAT) for a case study at the islands of São Tomé and Príncipe. Model results indicate that for the current time horizon, depth damage functions (DDF) and digital elevation model (DEM) dominate the overall damage estimation uncertainty. We find that, when introducing climate and socioeconomic uncertainties to the analysis, SLR projections become the most relevant input for the year 2100 (followed by DEM and DDF). In general, the scarcity of reliable input data leads to considerable predictive error in CFR assessments in SIDS. The findings of this research can help to prioritise the allocation of limited resources towards the acquisitions of the most relevant input data for reliable impact estimation.


2010 ◽  
Vol 10 (4) ◽  
pp. 881-894 ◽  
Author(s):  
F. Prettenthaler ◽  
P. Amrusch ◽  
C. Habsburg-Lothringen

Abstract. To date, in Austria no empirical assessment of absolute damage curves has been realized on the basis of detailed information on flooded buildings due to a dam breach, presumably because of the lack of data. This paper tries to fill this gap by estimating an absolute flood-damage curve, based on data of a recent flood event in Austria in 2006. First, a concise analysis of the case study area is conducted, i.e., the maximum damage potential is identified by using raster-based GIS. Thereafter, previous literature findings on existing flood-damage functions are considered in order to determine a volume-water damage function that can be used for further flood damage assessment. Finally, the flood damage function is cross validated and applied in prediction of damage potential in the study area. For future development of the estimated flood damage curve, and to aid more general use, we propose verification against field data on damage caused by natural waves in rivers.


2020 ◽  
Author(s):  
Héctor González López ◽  
C. Dionisio Pérez-Blanco ◽  
Laura Gil-García

<p><strong>Abstract</strong></p><p>Growing population and water demand (e.g for irrigation, water supply) and the vagaries of climate, now aggravated due to climate change, intensify societal exposure to water extremes and the economic and environmental impact of floods and droughts in Mediterranean basins. The Douro River Basin Authority (DRBA) in central Spain is assessing whether to build a dam in the Cega Catchment (Spain) with the twofold objective of substituting irrigation withdrawals from overallocated aquifers with relatively more abundant surface water, and of mitigating flood damage in the middle and lower stretches of the Cega River -the only non-regulated river in the DRB. This paper assesses and compares the costs of two alternative adaptation strategies to growing scarcity and more frequent and intense water extremes, namely dam construction v. the statu quo strategy where no dam is built. To this end, a Positive Multi-Attribute Utility Programing (PMAUP) that mimics farmer´s behavior and responses is used to assess the impacts on agricultural employment and gross value added of selected strategies in the irrigation sector; while the hydrologic model River Analysis System (HEC-RAS) is used to simulate the economic impact of flood events considering standard return periods, based on the global flood depth-damage functions developed by Huizinga et al. (2017). Both models are used to run 900 simulations reproducing alternative socioeconomic and climatic/hydrologic scenarios. The result is a database representing multiple plausible futures, which is used to identify vulnerabilities of proposed adaptation strategies and potential tradeoffs between responses -notably those referring to the design and operation rules of the dam, and the potential impact of floods and droughts. This methodology and the resultant database are combined with experts’ knowledge through robust decision-making tools to identify the preferred (i.e. robust) adaptation policy.</p>


2011 ◽  
Vol 11 (12) ◽  
pp. 3293-3306 ◽  
Author(s):  
P. Bubeck ◽  
H. de Moel ◽  
L. M. Bouwer ◽  
J. C. J. H. Aerts

Abstract. Flood damage modelling is an important component in flood risk management, and several studies have investigated the possible range of flood damage in the coming decades. Generally, flood damage assessments are still characterized by considerable uncertainties in stage-damage functions and methodological differences in estimating exposed asset values. The high variance that is commonly associated with absolute flood damage assessments is the reason for the present study that investigates the reliability of estimates of relative changes in the development of potential flood damage. While studies that estimate (relative) changes in flood damage over time usually address uncertainties resulting from different projections (e.g. land-use characteristics), the influence of different flood damage modelling approaches on estimates of relative changes in the development of flood damage is largely unknown. In this paper, we evaluate the reliability of estimates of relative changes in flood damage along the river Rhine between 1990 and 2030 in terms of different flood-damage modelling approaches. The results show that relative estimates of flood damage developments differ by a factor of 1.4. These variations, which result from the application of different modelling approaches, are considerably smaller than differences between the approaches in terms of absolute damage estimates (by a factor of 3.5 to 3.8), or than differences resulting from land-use projections (by a factor of 3). The differences that exist when estimating relative changes principally depend on the differences in damage functions. In order to improve the reliability of relative estimates of changes in the development of potential flood damage, future research should focus on reducing the uncertainties related to damage functions.


2013 ◽  
Vol 13 (10) ◽  
pp. 2493-2512 ◽  
Author(s):  
P. Brémond ◽  
F. Grelot ◽  
A.-L. Agenais

Abstract. In Europe, economic evaluation of flood management projects is increasingly used to help decision making. At the same time, the management of flood risk is shifting towards new concepts such as giving more room to water by restoring floodplains. Agricultural areas are particularly targeted by projects following those concepts since they are frequently located in floodplain areas and since the potential damage to such areas is expected to be lower than to cities or industries for example. Additional or avoided damage to agriculture may have a major influence on decisions concerning these projects and the economic evaluation of flood damage to agriculture is thus an issue that needs to be tackled. The question of flood damage to agriculture can be addressed in different ways. This paper reviews and analyzes existing studies which have developed or used damage functions for agriculture in the framework of an economic appraisal of flood management projects. A conceptual framework of damage categories is proposed for the agricultural sector. The damage categories were used to structure the review. Then, a total of 42 studies are described, with a detailed review of 26 of them, based on the following criteria: types of damage considered, the influential flood parameters chosen, and monetized damage indicators used. The main recommendations resulting from this review are that even if existing methods have already focused on damage to crops, still some improvement is needed for crop damage functions. There is also a need to develop damage functions for other agricultural damage categories, including farm buildings and their contents. Finally, to cover all possible agricultural damage, and in particular loss of activity, a farm scale approach needs to be used.


2020 ◽  
Vol 20 (6) ◽  
pp. 389-397
Author(s):  
Seonmi Lee ◽  
Youngje Choi ◽  
Jaeeung Yi

Locally concentrated heavy rainfall has led to an increase in the occurrence of flood damage. This is especially so in the urban areas, which are relatively more vulnerable to flood damage due to the high population and property density. In Seoul, which has 25 administrative districts, heavy rainfall triggered flood-related damage in 2010, 2011, and 2018. However, the flood characteristics of each district were different due to difference in flood impact factors such as topography, weather, and disaster prevention measures. The flood vulnerability of each district should be assessed based on local characteristics to reduce flood damage. This study collected and calculated 15 characteristic data points that can explain the climate exposure, sensitivity, and adaptive capacity of each district using the entropy weight method. Thereafter, the flood vulnerability of each district was calculated based on climate exposure, sensitivity, and adaptive capacity, using the Euclidean method. The results showed that the northern and western areas in Seoul are highly vulnerable due to high climate exposure, sensitivity, and low adaptive capacity. In contrast, the other parts of Seoul had low vulnerability due to high sensitivity, low climate exposure, and high adaptive capacity. These results will contribute to the establishment of a flood damage reduction plan that reflects local characteristics.


2015 ◽  
Vol 3 (11) ◽  
pp. 6845-6881 ◽  
Author(s):  
B. F. Prahl ◽  
D. Rybski ◽  
M. Boettle ◽  
J. P. Kropp

Abstract. Most climate change impacts manifest in the form of natural hazards. For example, sea-level rise and changes in storm climatology are expected to increase the frequency and magnitude of flooding events. In practice there is a need for comprehensive damage assessment at an intermediate level of complexity. Answering this need, we reveal the common grounds of macroscale damage functions employed in storm damage, coastal-flood damage, and heat mortality assessment. The universal approach offers both bottom-up and top-down damage evaluation, employing either an explicit or an implicit portfolio description. Putting emphasis on the treatment of data uncertainties, we perform a sensitivity analysis across different scales. We find that the behaviour of intrinsic uncertainties on the microscale level (i.e. single item) does still persist on the macroscale level (i.e. portfolio). Furthermore, the analysis of uncertainties can reveal their specific relevance, allowing for simplification of the modelling chain. Our results shed light on the role of uncertainties and provide useful insight for the application of a unified damage function.


Sign in / Sign up

Export Citation Format

Share Document