scholarly journals DEVELOPMENT OF ESTIMATION SYSTEM FOR EFFECTS OF THE REGIONAL ENERGY SYSTEM THAT SUPPLIES BOTH ELECTRIC POWER AND HEAT PRODUCED FROM WASTES AND BIOMASS RESOURCES WITHIN A SMALL AREA

2007 ◽  
Vol 35 ◽  
pp. 109-119
Author(s):  
Takashi YOKOI ◽  
Yugo YAMAMOTO ◽  
Osamu SAITO ◽  
Tohru MORIOKA
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2108 ◽  
Author(s):  
Yulei Xie ◽  
Linrui Wang ◽  
Guohe Huang ◽  
Dehong Xia ◽  
Ling Ji

In this study, in order to improve regional energy system adjustment, a multistage stochastic inexact robust programming (MSIRP) is proposed for electric-power generation planning and structure adjustment management under uncertainty. Scenario-based inexact multistage stochastic programming and stochastic robust optimization were integrated into general programming to reflect uncertainties that were expressed as interval values and probability distributions in the objective function and constraints. An MSIRP-based energy system optimization model is proposed for electric-power structure management of Zibo City in Shandong Province, China. Three power demand scenarios associated with electric-power structure adjustment, imported electricity, and emission reduction were designed to obtain multiple decision schemes for supporting regional sustainable energy system development. The power generation schemes, imported electricity, and emissions of CO2 and air pollutants were analyzed. The results indicated that the model can effectively not only provide a more stable energy supply strategies and electric-power structure adjustment schemes, but also improve the balanced development between conventional and new clear power generation technologies under uncertainty.


2015 ◽  
Vol 8 (1) ◽  
pp. 38-42
Author(s):  
Pengfei Si ◽  
Xiangyang Rong ◽  
Angui Li ◽  
Xiaodan Min ◽  
Zhengwu Yang ◽  
...  

As a realization of the energy cascade utilization, the regional energy system has the significant potential of energy saving. As a kind of renewable energy, river water source heat pump also can greatly reduce the energy consumption of refrigeration and heating system. Combining the regional energy and water source heat pump technology, to achieve cooling, heating and power supply for a plurality of block building is of great significance to reduce building energy consumption. This paper introduces a practical engineering case which combines the regional energy system of complex river water source heat pump, which provides a detailed analysis of the hydrology and water quality conditions of the river water source heat pump applications, and discusses the design methods of water intake and drainage system. The results show that the average temperature of cold season is about 23.5 °C, the heating season is about 13.2 °C; the abundant regional water flow can meet the water requirement of water source heat pump unit; the sediment concentration index cannot meet the requirement of river water source heat pump if the water enters the unit directly; the river water chemistry indicators (pH, Cl-, SO42-, total hardness, total iron) can meet the requirement of river water source heat pump, and it is not required to take special measures to solve the problem. However, the problem of sediment concentration of water must be solved.


Smart Cities ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1039-1057
Author(s):  
Amro M. Farid ◽  
Asha Viswanath ◽  
Reem Al-Junaibi ◽  
Deema Allan ◽  
Thomas J. T. Van der Van der Wardt

Recently, electric vehicles (EV) have gained much attention as a potential enabling technology to support CO2 emissions reduction targets. Relative to their internal combustion vehicle counterparts, EVs consume less energy per unit distance, and add the benefit of not emitting any carbon dioxide in operation and instead shift their emissions to the existing local fleet of power generation. However, the true success of EVs depends on their successful integration with the supporting infrastructure systems. Building upon the recently published methodology for the same purpose, this paper presents a “systems-of-systems” case study assessing the impacts of EVs on these three systems in the context of Abu Dhabi. For the physical transportation system, a microscopic discrete-time traffic operations simulator is used to predict the kinematic state of the EV fleet over the duration of one day. For the impact on the intelligent transportation system (ITS), the integration of EVs into Abu Dhabi is studied using a multi-domain matrix (MDM) of the Abu Dhabi Department of Transportation ITS. Finally, for the impact on the electric power system, the EV traffic flow patterns from the CMS are used to calculate the timing and magnitude of charging loads. The paper concludes with the need for an intelligent transportation-energy system (ITES) which would coordinate traffic and energy management functionality.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 495
Author(s):  
Jessica Thomsen ◽  
Noha Saad Hussein ◽  
Arnold Dolderer ◽  
Christoph Kost

Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon.


2021 ◽  
Vol 233 ◽  
pp. 110658
Author(s):  
Yakai Lu ◽  
Zhe Tian ◽  
Ruoyu Zhou ◽  
Wenjing Liu

2021 ◽  
pp. 5
Author(s):  
Aleksey Maklyukov

The article examines the historical aspects of the formation and implementation of the state strategy for the accelerated growth of the electric power industry in the Far East of the USSR in 1964—1991. The problems of power supply of the Far Eastern region of the country are analyzed, programs for the development of the regional electric power industry are considered, the difficulties of their implementation are revealed, structural changes in the industry and the results of electrification of the region are characterized. The author notes that the problems of regional energy supply had not been solved until the end of the Soviet era. The Far Eastern electric power industry continued to be a costly and lagging industry, slowing down the socio-economic development of the region.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2263 ◽  
Author(s):  
Romano Wyss ◽  
Susan Mühlemeier ◽  
Claudia Binder

In this paper, we apply an indicator-based approach to measure the resilience of energy regions in transition to a case study region in Austria. The indicator-based approach allows to determine the resilience of the transition of regional energy systems towards higher shares of renewables and potentially overall higher sustainability. The indicators are based on two core aspects of resilience, diversity and connectivity. Diversity is thereby operationalized by variety, disparity and balance, whereas connectivity is operationalized by average path length, degree centrality and modularity. In order to get a full picture of the resilience of the energy system at stake throughout time, we apply the measures to four distinct moments, situated in the pre-development, take-off, acceleration and stabilization phase of the transition. By contextually and theoretically embedding the insights in the broader transitions context and empirically applying the indicators to a specific case, we derive insights on (1) how to interpret the results in a regional context and (2) how to further develop the indicator-based approach for future applications.


2014 ◽  
Vol 627 ◽  
pp. 357-364 ◽  
Author(s):  
Goran Radovic ◽  
Vera Murgul ◽  
Nikolai Vatin ◽  
Ekaterina Aronova

The article deals with the concept of solar photovoltaic systems use in power supply systems. An analysis of local solar resources potential has been carried out, and optimal orientation points of radiant heat absorbing photovoltaic panels have been chosen to achieve maximum energy performance. Simulation of electric power systems having different configurations has been implemented using the software program Homer. It has been stated that a combination of solar and diesel energy systems is considered to be an optimal solution under the weather conditions of Montenegro. The systems working together make it possible to reduce maintenance costs significantly and adjust capacity generation schedule with due account for energy consumption features to a maximum extent. This allows generating electric power at less cost and results in a more reliable and continuous power supply without failures for a consumer chosen.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1915
Author(s):  
Heinz Bernhardt ◽  
Martin Höhendinger ◽  
Jörn Stumpenhausen

Regional energy supply is an important topic in the context of the energy transition in Germany. The “Cow Energy” project aims to combine the production of energy and milk for the farmer. In order to take the different needs into account, a central energy management system (EMS) is being established. This system records and simulates how much electricity is generated from renewable sources (biogas, solar, wind, etc.) on the farm. This is compared with the consumption of the barn technology (milking robot, feeding robot, etc.). This energy management is regulated according to the needs of the cows. In order to balance the fluctuations between energy production and energy consumption, the EMS regulates various battery systems. One goal is to network this energy system with the region and to establish regional energy networks.


Sign in / Sign up

Export Citation Format

Share Document