scholarly journals Validasi Model Hidrologi SWAT di Daerah Tangkapan Air Waduk Mrica (Validation of The SWAT Hydrological Model on The Catchment Area of Mrica Reservoir)

2017 ◽  
Vol 36 (4) ◽  
pp. 467
Author(s):  
Lukman Hidayat ◽  
Putu Sudira ◽  
Sahid Susanto ◽  
Rachmad Jayadi

Land cover index production has exceeded 80 % of the total area of  the upstream catchment area of Mrica reservoirs, indicating the occurrence of land conversion. Elementary hydrological model, is predicted as an extrapolation tool that can help to understand the complexity of watershed management, including land conversion. Soil Water Assessment Tool (SWAT) is a physically based, deterministic, continuous, watershed-scale hydrologic models that was developed by the USDA Agricultural Research Service. SWAT was developed from numerous individual models within a period more than 30 years, and has been applied in several areas. The aim of this study was applying the SWAT on the upstream region of Mrica reservoirs. The method of the research was using the SWAT modeling procedure through a systems based on input output processes (IO). Output model was in the form of flow rate, validated by means of calibration and verification using statistical and graphical criteria on monthly scale. The results showed that their value of R2 = 0.61, NSE = 0.61, PBIAS = -0.61 % and MB = -0.25 for calibration, and R2 = 0.74, NSE = 0.73, PBIAS = -4.06 % and MB = -1.57for verification. The value of the statistical test showed that the model SWAT has good degree of precision and accuracy in watershed modeling. NSE values > 0.65 indicates that the SWAT model has an accuracy of very good degree. Several challenges in this watershed modelling are the availability and adequacy of data, the optimizationof parameters, time and computer resources. ABSTRAKIndeks Penutupan Lahan (IPL) produksi yang telah melebihi 80 % dari total luas kawasan Hulu Daerah Tangkapan Air (DTA) waduk Mrica, mengindikasikan telah terjadinya alih fungsi lahan. Model hidrologi elementer, dipandang sebagai alat ekstrapolasi yang dapat membantu untuk memahami kompleksitas pengelolaan kawasan Daerah Aliran Sungai (DAS), di antaranya alih fungsi lahan. Soil Water Assessment Tool (SWAT) adalah model hidrologi skala DAS berbasis fisik, deterministik, dan kontinyu yang dikembangkan oleh USDA (United States of Department of Agriculture) Agricultural Research Service. Model SWAT dikembangkan dari sejumlah model-model individu dalam periode lebih dari 30 tahun, dan telah diaplikasikan pada beragam wilayah, dalam rentang waktu yang cukup lebar. Penelitian ini bertujuan untuk mengaplikasikan model SWAT pada kawasan hulu DTA waduk Mrica. Metode yang digunakan yaitu menjalankan prosedur pemodelan SWAT melalui pendekatan sistem yaitu proses Input Output (IO). Luaran model berupa debit aliran, yang kemudian divalidasi dengan cara kalibrasi dan verifikasi menggunakan kriteria statistik dan grafis pada skala bulanan. Hasilnya menunjukkan bahwa nilai R2 = 0,61, NSE = 0,61, PBIAS = -0,61 % dan MB = -0,25 untuk kalibrasi, dan R2 = 0,74, NSE = 0,73, PBIAS = -4,6 % dan MB = -1,57 untuk verifikasi. Nilai uji statistik tersebut menunjukkan bahwa model SWAT mempunyai tingkat presisi dan akurasi yang baik dalam pemodelan DAS. Nilai NSE > 0,65 mengindikasikan bahwa model SWAT yang diaplikasikan mempunyai tingkat akurasi mencapai derajat sangat baik. Tantangan yang dihadapi dalam pemodelan DAS ini yaitu ketersediaan dan kecukupan data, optimasi parameter, waktu dan sumberdaya komputer.

Author(s):  
Wanderson dos Santos Sousa ◽  
Jussara Freire de Souza Viana ◽  
Rafael Rodrigues da Silva ◽  
Ricardo Alexandre Irmão

O uso de modelos hidrológicos tem buscado prever de forma realista os processos hidrológicos que ocorrem em bacias hidrográficas, sobretudo a transformação da precipitação em escoamento superficial e evapotranspiração, dentre os inúmeros modelos existentes atualmente, um dos mais utilizados em todo o mundo é o Soil and Water Assessment Tool (SWAT), desenvolvido pelo Agricultural Research Service/United States Department of Agriculture (ARS/USDA) dos Estados Unidos. O estudo objetivou comparar e analisar o balanço hídrico de uma sub-bacia da bacia hidrográfica do Rio Ipanema-PE por meio da estimativa apresentada pelo modelo SWAT e pelo método de Thornthwaite & Mather. Para a realização desta pesquisa foi selecionada uma sub-bacia da bacia hidrográfica do rio Ipanema-PE, inserida no Agreste Pernambucano, que abrange os municípios de Venturosa, Alagoinha, Pedra e Buíque. Os resultados das médias mensais das componentes do balanço hídrico simuladas pelo SWAT foram comparados com as médias mensais simuladas pelo método de Thornthwaite & Mather para a área da sub-bacia. Foram comparados os valores mensais, através de gráficos de dispersão e análise do coeficiente de determinação, da quantidade total de chuva que precipita sobre a área da sub-bacia durante o tempo de simulação, a evapotranspiração real da sub-bacia e a evapotranspiração potencial. O ciclo temporal, considerando valores climáticos mensais para toda a bacia, foi bem representado entres os dois métodos utilizados e para as três variáveis estudadas, precipitação, evapotranspiração real e evapotranspiração potencial.


2018 ◽  
Vol 162 ◽  
pp. 03008 ◽  
Author(s):  
Imzahim Abdulkareem Alwan ◽  
Ibtisam Karim ◽  
Mahmood Mohamed

Sediment production is the amount of sediment in the unit area that is transported through the basin by water transfer over a specified period of time. The main aim of present study is to predict sediment yield of Wadi, Al-Naft watershed with 8820 Km2area, that is located in the North-East of Diyala Governorate in Iraq, using Soil-Water Assessment Tool, (SWAT) and to predict the impact of land management and the input data including the land use, soil type, and soil texture maps which are obtained from Landsat-8 satellite image. Digital Elevation Model,(DEM) with resolution (14 14) meter is used to delineate the watershed with the aid of model. Three Land-sat images were used to cover the study area which were mosaic processed and the study area masked- up from the mosaic, image. The area of study has been registries by Arc-GIS 10.2 and digitized the soil hydrologic group through assistant of Soil Plant Assistant Water Model, (SPAW) which was progressed by USDA, Agricultural, Research Service, using the data of soil textural and organic matter from Food and Agriculture Organization (FAO), the available water content, saturated hydraulic conductivity, and bulk density. The results of average, sediment depth and the maximum upland sediment for simulation period (2010-2020) were predicted to be (1.7 mm), and (12.57 Mg/ha), respectively.


2020 ◽  
Vol 4 (2) ◽  
pp. 90-95
Author(s):  
Ibrahim Sufiyan ◽  
Magaji J.I ◽  
A.T. Ogah

Risks and hazards are two important issues currently threatening humanity and the environment. Flood has claimed many lives and destroyed properties in Malaysia and Africa and Nigeria. It is global catastrophe. The application of geospatial science is, therefore, very important advantages that it offers solutions to flood. This stud uses of Advanced Space-borne Thermal Emission and Reflection Radiometer Digital Elevation Model (ASTER-DEM), and the Soil Water Assessment Tool (SWAT) in visualizing floods disaster risk. The whole catchment area of Terengganu has been delineated. The 25 sub-basins have been identified and the flood risk zones have been modeled. The complete watersheds are characterized by different sub-basins and Hydrologic Respond Units (HRUs) which can be viewed in 3D environment.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sharlene L. Beharry ◽  
Donald Gabriels ◽  
Deyanira Lobo ◽  
Deanesh Ramsewak ◽  
Ricardo M. Clarke

AbstractIn tropical small islands the application of hydrological modelling is challenged by the scarcity of input data. Using in-situ and statistically estimated data, a hydrological model was calibrated and validated for the Upper Navet watershed in Trinidad, a small Caribbean island. The model was built using the soil water assessment tool (SWAT). The sensitivity analysis, calibration and validation were performed in SWAT calibration and uncertainty program (SWAT-CUP) using sequential uncertainty fitting (SUFI-2). The results revealed that for the estimated volume of water flowing into the reservoir (Flow_In) there were six sensitive parameters. To estimate the reservoir volume (Res_Vol), a modification of only the effective hydraulic conductivity was required. The model’s performance for the Flow_In validation showed acceptable values (R2 = 0.91 and NSE = 0.81). The uncertainty analysis indicated lower than recommended values for both the R-factor (0.46) and P-factor (0.31). For Res_Vol, the model’s validation performance indicated acceptable values (R2 = 0.72 and NSE = 0.70) and the P- and R-factors were 0.80 and 0.64, respectively. Based on the statistical metrics, the uncertainty for the Res_Vol was regarded as reasonable. However, care must be taken with the model’s use in the dry season, as the simulated Flow_In was generally over-predicted. A second validation of the model was performed for the reservoir under different negative (removal) and positive (addition) water amounts which confirmed the model’s ability to estimate the Res_Vol. The hydrological model established can therefore serve as a useful tool for water managers for the estimation of the Res_Vol at the Navet reservoir.


2020 ◽  
Vol 31 (3) ◽  
pp. 113-114
Author(s):  
Nelson Laville ◽  
Kenrick Witty ◽  
Ulises Garcia

The Beyond Compliance Global team held an interview by video link with Dr Eric Jang, United States Department of Agriculture, Agricultural Research Service (USDA/ARS), now retired. His lab was based in Hawaii, where he continues to reside. Eric was an early advocate and one of the originators of the concepts for Systems Approach.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


2021 ◽  
Vol 32 (4) ◽  
pp. 176-177

If a farmer has nematode problems or has too many weeds or fungal attacks a simple solution is to spread some mustard on them. Agricultural Research Service and university scientists are experimenting with mustards as an alternative to fighting crop pests chemically. The system biofumigates pests with stands of white mustard, brown mustard, and rapeseed.. Biofumigation refers to natural substances plants release while decomposing that make surrounding soils toxic to some weeds, nematodes, and fungi. The experiments, in Washington State, dovetail with increasing grower interest in mustard crops for pest control and as "green manure" meaning it can be disked into soil to improve tilth, organic matter, aeration, and water filtration. Despite such benefits, there is still much to learn about how mustards control pests and under what conditions they work best.


Sign in / Sign up

Export Citation Format

Share Document