scholarly journals KEBUTUHAN AIR, EFISIENSI PENGGUNAAN AIR DAN KETAHANAN KEKERINGAN KULTIVAR KEDELAI (Water Use, Water Use Efficiency and Drought Tolerance of Soybean Cultivars)

2015 ◽  
Vol 35 (01) ◽  
pp. 114 ◽  
Author(s):  
Sri Suryanti ◽  
Didik Indradewa ◽  
Putu Sudira ◽  
Jaka Widada

Water use (WU) and water use efficiency (WUE) provides a simple methods of assessing whether yield is affected by water supply.Drought tolerance cultivars havestable yield under drought. The objective of this study was to asses water use, water use efficiency, and drought tolerance of soybean cultivars. The 18 × 4 factorial experiment was set in a completely randomized design with three replications during May to October 2012 at the Tridharma Research Station Faculty of Agriculture, Gadjah Mada University at altitute 110 m dpl. Eighteen soybean cultivars were assigned as the first factor and four level watering intervals i.e. 1days, 2 days, 4 days and 8 days until field capasity were assigned asthe second factor. Data were recorded for water use at 15 days until 56 days after planting andwater use efficiency at 56 days after planting. Data for stress index andstress susceptibility index  were calculated at 84 days after planting. Results indicated that Grobogan and Galunggung were identified as drought tolerance cultivars with water use values rangedfrom  4.87 to 4.98 mm and water use efficiency value 5.16 gram/mm. Burangrang, Kaba, Argomulyo, Panderman, Baluran, Ijen,  Petek, Malabar were identified as medium drought tolerance cultivars with water use values ranged from 3.98 to 6.14 mm and water use efficiency values ranged from 3.69 to 5.51 gram/mm. Sibayak, Tanggamus, Anjasmoro, Wilis, Garut, Gepak, Sinabung, and Seulawah were identified as sensitive cultivars with water use values ranged from  5.37 to 5.95 mm and water use efficiency values ranged from 3.49 to 5.60 gram/mm. Keywords: Water use, water use efficiency, drought tolerance, soybean cultivars ABSTRAKKebutuhan air dan efisiensi penggunaan air merupakan cara sederhana untuk mengetahui apakah hasil tanaman dipengaruhi oleh pasokan air. Tanaman tahan kering mengalami penurunan hasil lebih rendah ketika terjadi cekaman kekeringan. Penelitian ini dilakukan untuk mengetahui kebutuhan air tanaman, efisiensi penggunaan air dan variasi ketahanan kultivar kedelai terhadap cekaman kekeringan. Rancangan percobaan yang digunakan adalah rancangan acak lengkap (RAL) faktorial 18 x 4 dengan tiga ulangan. Penelitian dilaksanakan pada bulan Mei sampai Oktober 2012 di Kebun Tridharma  Fakultas Pertanian Universitas Gadjah Mada dengan ketinggian tempat 110 m dpl. Faktor pertama adalah kultivar kedelai terdiri atas 18 kultivar dan faktor kedua adalah interval penyiraman terdiri atas 4 taraf yaitu penyiraman 1 hari, 2 hari, 4 hari dan 8 hari sekali sampai kapasitas lapangan. Pengamatan kebutuhan air dilakukan mulai umur 15 hari sampai 56 hari setelah tanam dan efisiensi penggunaan air dilakukan pada umur 56 hari setelah tanam. Perhitungan indeks cekaman dan indeks sensitivitas cekaman dilakukan pada umur 84 hari setelah tanam. Hasil penelitian menunjukkan bahwa kultivar Grobogan dan Galunggung tahan terhadap cekaman kekeringan dengankebutuhan air antara  4,87 sampai 4,98 mm dan efisiensi penggunaan air 5,16gram/mm. Kultivar Burangrang, Kaba, Argomulyo, Panderman, Ijen, Baluran, Petek, dan Malabar merupakan kultivar yang agak tahan terhadap cekaman kekeringan dengan kebutuhan air antara 3,98 sampai 6,14 mm dan efisiensi penggunaan air antara  3,69 sampai  5,51gram/mm. Kultivar Sibayak, Tanggamus, Anjasmoro, Wilis, Garut, Gepak Kuning, Sinabung, dan Seulawah merupakan kultivar yang tidak tahan terhadap cekaman kekeringan dengan kebutuhan air antara  5,37 sampai 5,95 mm dan efisiensi penggunaan air antara  3,49 sampai 5,60 gram/mm.Kata kunci: Kebutuhan air, efisiensi penggunaan air, ketahanan kekeringan, kultivar kedelai

2021 ◽  
Vol 78 (5) ◽  
Author(s):  
Guilherme Filgueiras Soares ◽  
Walter Quadros Ribeiro Júnior ◽  
Lucas Felisberto Pereira ◽  
Cristiane Andréa de Lima ◽  
Daiane dos Santos Soares ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dario Mantovani ◽  
Maik Veste ◽  
Dirk Freese

Black locust (Robinia pseudoacaciaL.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.


Author(s):  
Mohammad Mehdi Arab ◽  
Annarita Marrano ◽  
Rostam Abdollahi-Arpanahi ◽  
Charles A Leslie ◽  
Hao Cheng ◽  
...  

Abstract Walnut production is challenged by climate change and abiotic stresses. Elucidating the genomic basis of adaptation to climate is essential to breeding drought tolerant cultivars for enhanced productivity in arid and semi-arid regions. Here, we aimed to identify loci potentially involved in water use efficiency (WUE) and adaptation to drought in Persian walnut using a diverse panel of 95 walnut families (950 seedlings) from Iran, which show contrasting levels of water availability in their native habitats. We analyzed associations between phenotypic, genotypic, and environmental variables from datasets of 609 K high-quality single-nucleotide polymorphisms (SNPs), three categories of phenotypic traits (WUE related traits under drought, their drought stress index and principal components), and 21 climate variables and combination of them (first three PCs). Our genotype-phenotype analysis identified 22 significant and 266 suggestive associations, some of which were identified for multiple traits, suggesting their correlation and a possible common genetic control. Also, genotype-environment association analysis found 115 significant and 265 suggestive SNP loci that displayed potential signals of local adaptation. Several sets of stress-responsive genes were found in the genomic regions significantly associated with the aforementioned traits. Most of the candidate genes identified are involved in abscisic acid signaling, stomatal regulation, transduction of environmental signals, antioxidant defense system, osmotic adjustment, and leaf growth and development. Upon validation, the marker-trait associations identified for drought tolerance-related traits would allow the selection and development of new walnut rootstocks or scion cultivars with superior water use efficiency.


Plants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 123 ◽  
Author(s):  
James Bunce

High intrinsic water-use efficiency (WUEi), the ratio of leaf photosynthesis to stomatal conductance, may be a useful trait in adapting crops to water-limited environments. In soybean, cultivar differences in stomatal response to vapor pressure deficit have not consistently translated into differences in WUEi in the field. In this study, six cultivars of soybeans previously shown to differ in WUEi in indoor experiments were grown in the field in Beltsville, Maryland, and tested for mid-day WUEi on nine clear days during the mid-seasons of two years. Measurement dates were chosen for diverse temperatures, and air temperatures ranged from 21 to 34 °C on the different dates. Air saturation deficits for water vapor ranged from 0.9 to 2.2 kPa. Corrected carbon isotope delta values for 13C (CID) were determined on mature, upper canopy leaves harvested during early pod filling each year. WUEi differed among cultivars in both years and the differences were consistent across measurement dates. Correlations between mean WUEi and CID were not significant in either year. It is concluded that consistent cultivar differences in WUEi exist in these soybean cultivars under field conditions, but that carbon isotope ratios may not be useful in identifying them because of cultivar differences in mesophyll conductance.


1999 ◽  
Vol 79 (4) ◽  
pp. 627-637 ◽  
Author(s):  
D. A. Twerdoff ◽  
D. S. Chanasyk ◽  
M. A. Naeth ◽  
V. S. Baron ◽  
E. Mapfumo

To maintain a sustainable agricultural system, management practices such as grazing must ensure adequate soil water for plant growth, yet minimize the risk of soil erosion. The objective of this study was to characterize the soil water regime of perennial and annual forages under three grazing intensities (heavy, medium and light). The study was conducted at the Lacombe Research Station, Alberta, on an Orthic Black Chernozem of loam to silt loam texture. The forages used were smooth bromegrass (Bromus inermis L. 'Carlton'), meadow bromegrass (Bromus riparius L. 'Paddock'), a mixture of triticale (X Triticosecale Wittmack 'Pika') and barley (Hordeum vulgare L. 'AC Lacombe') and triticale. Soil water measurements were conducted between April and October of 1994 and 1995 using a neutron scattering hydroprobe to a depth of 90 cm. Surface (0–7.5 cm) soil water was more responsive to grazing intensity than soil water accumulated to various depths. For all grazing treatments and forages, both surface soil water and accumulated soil water generally fluctuated between field capacity and wilting point during the growing season. Although plant water status was not determined, no visual permanent wilting of forages was observed during the study. Differences in evapotranspiration (ET), as determined by differences in soil water were evident among forage species but not grazing intensities, with perennials having high ET in spring and annuals having high ET in summer. Estimated values of water-use efficiency (WUE) were greater for perennials than for annuals and grazing effects on WUE were minimal. From a management perspective, grazing of annuals and perennials altered soil water dynamics but still maintained adequate soil water for plant growth. Key words: Evapotranspiration, forages, grazing intensity, water-use efficiency


2017 ◽  
Vol 121 ◽  
pp. 38-47 ◽  
Author(s):  
Pabline Marinho Vieira ◽  
Mirella Pupo Santos ◽  
Cristiana Moura Andrade ◽  
Otacílio Antônio Souza-Neto ◽  
Cirano José Ulhoa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document