scholarly journals RELATION BETWEEN PORE MODEL AND CENTER-LINE TEMPERATURE IN HIGH BURN-UP UO2 PELLET

2010 ◽  
Vol 7 (2) ◽  
pp. 147-153
Author(s):  
Suwardi Suwardi

Relation between pore model and center-line temperature of high burn up UO2 Pellet. Temperature distribution has been evaluated by using different model of pore distribution. Typical data of power distribution and coolant data have been chosen in this study. Different core model and core distribution model have been studied for related temperature, in correlation with high burn up thermal properties. Finite element combined finite different adapted from Saturn-1 has been used for calculating the temperature distribution. The center-line temperature for different pore model and related discussion is presented.   Keywords: pore model, high burn up, UO2 pellet, centerline temperature.

Author(s):  
M. Palaniappan ◽  
V. Ng ◽  
R. Heiderhoff ◽  
J.C.H. Phang ◽  
G.B.M. Fiege ◽  
...  

Abstract Light emission and heat generation of Si devices have become important in understanding physical phenomena in device degradation and breakdown mechanisms. This paper correlates the photon emission with the temperature distribution of a short channel nMOSFET. Investigations have been carried out to localize and characterize the hot spots using a spectroscopic photon emission microscope and a scanning thermal microscope. Frontside investigations have been carried out and are compared and discussed with backside investigations. A method has been developed to register the backside thermal image with the backside illuminated image.


2019 ◽  
Vol 10 (4) ◽  
pp. 469-483 ◽  
Author(s):  
Isam Tareq Abdullah ◽  
Sabah Khammass Hussein

Purpose The purpose of this paper is to join a sheet of the AA7075 with the high-density polyethylene (HDPE) by a lap joint using friction spot processing and investigate the temperature distribution of joint during this process using the finite element method (FEM). Design/methodology/approach A semi-conical hole was manufactured in the AA7075 specimen and a lap joint configuration was prepared with the HDPE specimen. A rotating tool was used to generate the required heat to melt the polymer by the friction with the AA7075 specimen. The applied tool force moved the molten polymer through the hole. Four parameters were used: lower diameter of hole, rotating speed, plunging depth and time. The results of shear test were analyzed using the Taguchi method. A FEM was presented to estimate the temperature distribution of joint during the process. Findings All specimens failed by shearing the polymer at the lap joint region without dislocation. The specimens of the smallest diameter exhibited the highest shear strength at the lap joint. The maximum ranges of temperature were recorded at the contact region between the rotating tool and the AA7075 specimen. The tool plunging depth recorded the highest effect on the generated heat compared with the rotating speed and plunging time. Originality/value For the first time, the AA7075 sheet was joined with the HDPE sheet by friction spot processing. The temperature distribution of this joint was simulated using the FEM.


Author(s):  
Xiaofeng Guo ◽  
Zhiqiang Guo ◽  
Qian Yang ◽  
Wei Dong

Abstract A numerical simulation model of electrothermal de-icing process on carbon fiber reinforced polymer (CFRP) composite is conducted to study the effect of thermal properties of the substrate on the ice melting process. A novel melting model which is based on the enthalpy-porosity method is applied to study the transient ice melting process and heat transfer of the de-icing sys-tem. Multi-layered electrothermal de-icing systems including composites with different fiber orientation are used to analyze the effects of orthotropic heat conductivity of the CFRP composite on the ice melting process and heat transfer. Movement of the ice-water interface, the melted zone thickness and the melted zone area on CFRP composite are investigated on the three-dimensional electrothermal de-icing unit. The effects of thermal properties of substrate on the temperature distribution of the ice-airfoil interface are analyzed. The computational results show that the thermal properties of substrates affect the temperature on the ice-airfoil interface, the temperature distribution in the substrate, ice melting area, ice melting rate and ice melting volume significantly. The time that ice starts to melt on the CFRP composite substrate is earlier than that on the metal substrate. However, it takes more time for the ice to melt completely on the ice-CFRP interface than that on the ice-metal inter-face. The orthotropic heat conductivity of CFRP composite results in strong directivity of the melting area on the ice-CFRP in-terface. A ratio parameter is defined to represent the matching degree of substrate materials and geometry model of de-icing system. The simulation model can be applied to study electrothermal de-icing system of nacelle inlet and airfoil made of composite. The results in present work is also helpful to predict the change of temperature during de-icing process and provide guidelines for the optimizing the electrothermal de-icing system to reduce power consumption according to the fiber structure of composite.


2020 ◽  
Vol 95 ◽  
pp. 104665
Author(s):  
P. Prakasam ◽  
T.R. Suresh Kumar ◽  
T. Velmurugan ◽  
S. Nandakumar

2012 ◽  
Vol 462 ◽  
pp. 109-115
Author(s):  
Zhen Long Wang ◽  
Bao Cheng Xie ◽  
Yu Kui Wang ◽  
Wan Sheng Zhao

A numerical model of cathode erosion in EDM process using finite element method is presented. Using this model, numerical simulation of the single spark of EDM process has been carried out with parameters such as conduction, convection, the latent heat of phase change, thermal properties of material with temperature and gauss distribution of heat flux to predict the temperature distribution in the discharge point of cathode as a result of single discharges in EDM process. The simulation result shows the trend of dynamic temperature distribution of heat -affected zone and well explains mechanism of material removal in EDM process.


Sign in / Sign up

Export Citation Format

Share Document