scholarly journals Synthesis, Characterization and DFT Study of 4,4′-Oxydianiline Imines as Precursors of Tetrahalo-1,3-oxazepine-1,5-dione

2017 ◽  
Vol 17 (2) ◽  
pp. 330
Author(s):  
Abdullah Hussein Kshash ◽  
Mohammed Ghannam Mokhlef

This work presents four Schiff bases derived from 4,4′-Oxydianiline, distinguished by the para substituted halogen of benzaldehyde. These bases were used to synthesize eight compounds of di-1,3-oxazepine by direct condensation with tetrachloro phthalic anhydride and tetrabromo phthalic anhydride. The reactions were monitored with TLC and all structures were characterized using spectroscopic techniques such as FT-IR, 1H-NMR, 13C-NMR and C, H, N techniques. On the other hand, a theoretical study by Density Functional Theory (DFT) for the electronic structures was intended to study the effects of para-substituted halogen of benzaldehyde on the electronic structure of synthesized Schiff bases by using the Gaussian program. Theoretical results indicate that there is no effect of halogen atoms except for bromine on HOMO and LUMO energies of the synthesized compounds.

2012 ◽  
Vol 27 ◽  
pp. 403-413 ◽  
Author(s):  
Ana L. M. Batista de Carvalho ◽  
Sónia M. Fiuza ◽  
John Tomkinson ◽  
Luís A. E. Batista de Carvalho ◽  
M. Paula M. Marques

A conformational analysis of the Pt(dap)Cl2complex (-diaminopropane) was performed by vibrational spectroscopy (FTIR, Raman, and INS), coupled to quantum mechanical methods within the density functional theory (DFT) and effective core potential (ECP) approaches. A complete spectral assignment of the system was achieved, due to the combined use of all available vibrational spectroscopic techniques. A good agreement was found between experimental and theoretical results, as well as with reported data for analogous complexes (e.g., cisplatin).


2012 ◽  
Vol 23 (1) ◽  
pp. 121-127
Author(s):  
İbrahim Șen ◽  
Cem Burak Yildiz ◽  
Akın Azizoğlu

Abstract The syntheses of new tetraaza macrocyclic compounds of variable ring sizes by non-template methods and their characterization with the help of elemental analysis and spectroscopic techniques (FT-IR, 1H-NMR, and 13C-NMR) have been reported in detail. The vibrational frequencies determined experimentally are compared with those obtained theoretically from density functional theory (DFT) and Hartree-Fock (HF) calculations. The comparisons between the experimental and theoretical results indicate that B3LYP level with both the 3-21G(d) and 6-31G+(d,p) basis sets is able to provide satisfactory results for predicting IR properties. The frontier molecular orbital diagrams and molecular electrostatic potential maps of title compounds have been also calculated and visualized at the B3LYP/6-31G+(d,p) level of theory.


2019 ◽  
Vol 16 (12) ◽  
pp. 983-995
Author(s):  
Roop Kumar ◽  
Poornima Devi ◽  
Anil K. Verma ◽  
Abha Bishnoi

: Structural elucidation of synthesized 2,6-diphenylspiro[cyclohexane-1,3’-pyrido[1,2- a]pyrimidine]-2’,4,4’-trione has been done by UV, FT-IR, 1H, 13C NMR and mass spectroscopy. The molecule was further subjected to density functional theory (DFT) studies with B3LYP function using 6-31G(d,p) basis atomic set. The title molecule was investigated on the basis of thermodynamic properties, polarizability, hyperpolarizability, intermolecular interactions, HOMO and LUMO energy values, MESP, ESP and NBO computations to correlate experimental results with in-silico studies.


2020 ◽  
Vol 32 (10) ◽  
pp. 2475-2485
Author(s):  
M. Latha Beatrice ◽  
S. Mary Delphine ◽  
M. Amalanathan ◽  
H. Marshan Robert

The molecular structure and vibrational spectra of 10H-dibenzo[b,e][2,4]oxazine was calculated with the help of B3LYP density functional theory (DFT) using 6-311G (d,p) basis set. The FT-IR and FT-Raman spectra of title compound were interpreted by comparing the experimental results with the theoretical B3LYP/6-311G (d,p) calculations. The experimental observed vibrational frequencies are compared with the calculated vibrational frequencies and they are in good agreement with each other. Natural bond orbital (NBO) analysis interprets the intramolecular contacts of title molecule. The 1H and 13C NMR chemical movements of the particle have been determined by the gauge independent atomic orbital (GIAO) strategy and contrasted with the experimental outcome. The deciphered HOMO and LUMO energies showed the chemical stability of the molecules. Fukui capacity and natural charge investigation on atomic charges of the title molecule have been discussed. Docking reads were performed for title molecule utilizing the molecular docking programming with fungicidal dynamic PDB’s.


2019 ◽  
Vol 19 (6) ◽  
pp. 419-433 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Liudmila Filippovich ◽  
Evgenij Dikusar ◽  
Anhelina Pazniak ◽  
...  

: In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. Methods and Results: Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. Conclusion: FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.


2018 ◽  
Vol 15 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Mohamed K. Awad ◽  
Mahmoud F. Abdel-Aal ◽  
Faten M. Atlam ◽  
Hend A. Hekal

Aim and Objective: Synthesis of new .-aminophosphonates containing quinazoline moiety through Kabachnik-Fields reaction in the presence of copper triflate catalyst [32], followed by studying their antimicrobial activities and in vitro anticancer activities against liver carcinoma cell line (HepG2) with the hope that new anticancer agents could be developed. Also, the quantum chemical calculations are performed using density functional theory (DFT) to study the effect of the changes of molecular and electronic structures on the biological activity of the investigated compounds. Materials and Method: The structures of the synthesized compounds are confirmed by FT-IR, 1H NMR, 13C NMR, 31P NMR and MS spectral data. The synthesized compounds show significant antimicrobial and also remarkable cytotoxicity anticancer activities against liver carcinoma cell line (HepG2). Density functional theory (DFT) was performed to study the effect of the molecular and electronic structure changes on the biological activity. Results: It was found that the electronic structure of the substituents affects on the reaction yield. The electron withdrawing substituent, NO2 group 3b, on the aromatic aldehydes gave a good yield more than the electron donating substituent, OH group 3c. The electron deficient on the carbon atom of the aldehydic group may increase the interaction of the Lewis acid (Cu(OTf)2) and the Lewis base (imine nitrogen), and accordingly, facilitate the formation of imine easily, which is attacked by the nucleophilic phosphite species to give the α- aminophosphonates. Conclusion: The newly synthesized compounds exhibit a remarkable inhibition of the growth of Grampositive, Gram-negative bacteria and fungi at low concentrations. The cytotoxicity of the synthesized compounds showed a significant cytotoxicity against the liver cancer cell line (HepG 2). Also, it was shown from the quantum chemical calculations that the electron-withdrawing substituent increases the biological activity of the α-aminophosphonates more than the electron donating group which was in a good agreement with the experimental results. Also, a good agreement between the experimental FT-IR and the calculated one was found.


2011 ◽  
Vol 311-313 ◽  
pp. 526-529
Author(s):  
Cai Juan Xia ◽  
Han Chen Liu ◽  
Ji Xin Yin

Using non-equilibrium Green’s function formalism combined with first-principles density functional theory, we investigate the electronic transport properties of a triangle terarylene(open- and closed-ring forms) optical molecular switch. The influence of the HOMO-LUMO gaps and the spatial distributions of molecular orbitals on the quantum transport through the molecular device is discussed. Theoretical results show that the conductance of the closed-ring is 3-8 times larger than that of open-ring, which expect that this system can be one of good candidates for optical switches due to this unique advantage, and may have some potential applications in future molecular circuit.


2019 ◽  
Vol 41 (6) ◽  
pp. 1107-1107
Author(s):  
Mohammed Taha Yaseen and Abdullah Hussein Kshash Mohammed Taha Yaseen and Abdullah Hussein Kshash

The paper presents six homologues series of Schiff bases ether compounds distinguished by the length of terminal alkoxy groups which substituted on a side benzene nucleus. The above structures were demonstrated through the use of spectroscopic techniques, like FT- IR and 1H-NMR. Polarized hot stage optical microscopy was used to study both mesomorphic properties and phase transitions. The results showed that out of the six compounds only three (B2, B3 and B4) were pure (marble) nematic mesophase, while no liquid crystal properties for (B5, B6 and B7) compounds. The theoretical study for the electronic structures was intended to study the effects of alkyl chain length on the electronic structure by using Gaussian program, DFT and 6-31G as basis set. The theoretical results indicate that there is no effect to the terminal substituted alkoxy groups on the HOMO energies but there is an effect on LUMO energies through decreasing energy for the prepared compounds.


2018 ◽  
Vol 6 (1) ◽  
pp. 114
Author(s):  
Tahar Abbaz ◽  
Amel Bendjeddou ◽  
Didier Villemin

In these study we have been obtained the structural properties of (exTTF) derivatives 1-4 by using B3LYP/6-31G(d,p) of Density Functional Theory (DFT) utilizing Becke three exchange functional and Lee Yang Paar correlation functional. The calculation of first hyperpolarizability shows that the molecules are attractive molecules for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. 


Sign in / Sign up

Export Citation Format

Share Document