scholarly journals Implementasi Protokol Diffie-Hellman Dan Algoritma RC4 Untuk Keamanan Pesan SMS

Author(s):  
Decky Hendarsyah ◽  
Retantyo Wardoyo

Abstrack— SMS now becomes such a need for cellular phone users to communicate to other people. But the cellular phone users do not realize that the sent messages could be intercepted or changed by an unwanted party. Therefore it requires a security in sending an SMS message which is called cryptography. Given limited resources on cellular phone, then the implementation of symmetric cryptographic technique is suitable to meet the security needs of an SMS message. In symmetric cryptography, there is a symmetric key for encryption and decryption process. In order to secure exchange of symmetric keys in public channels is required of a protocol for key exchange.This research implements RC4 symmetric cryptography to encrypt and decrypt messages, while for key exchange is using Diffie-Hellman protocol. In this research, there are modifications to the Diffie-Hellman protocol that is the calculation of the public key and symmetric key to include cellular phone number as authentication. Whereas on a modified RC4 is the key where there is a combination with cellular phone number as authentication and key randomization, and then there are also modifications to the pseudorandom byte generator, encryption and decryption of the RC4 algorithm. The system is constructed using the Java programming language in the platform Micro Edition (J2ME) based MIDP 2.0 and CLDC 1.0.The research found that with the cellular phone number as authentication, key, encryption and decryption process automatically it is able to maintain confidentiality, data integrity, authentication and non-repudiation to the message. Keywords—  Diffie-Hellman, Key exchange, RC4, SMS Secure, Symmetric Cryptography.

Author(s):  
Sabitha S ◽  
Binitha V Nair

Cryptography is an essential and effective method for securing information’s and data. Several symmetric and asymmetric key cryptographic algorithms are used for securing the data. Symmetric key cryptography uses the same key for both encryption and decryption. Asymmetric Key Cryptography also known as public key cryptography uses two different keys – a public key and a private key. The public key is used for encryption and the private key is used for decryption. In this paper, certain asymmetric key algorithms such as RSA, Rabin, Diffie-Hellman, ElGamal and Elliptical curve cryptosystem, their security aspects and the processes involved in design and implementation of these algorithms are examined.


Author(s):  
Yibo Liu ◽  
Xuejing Hao ◽  
Yanjun Mao

At present, the mental health of college students has also become an important issue that urgently needs attention under the influence of the surrounding environment. It is coupled with the grim employment situation after graduation and the students’ psychological burden is becoming more and heavier. This paper based on Diffie-Hellman key exchange algorithm studied the effect of psychological stress intervention. First, the Diffie-Hellman key exchange algorithm was analyzed, and then the Diffie-Hellman prediction model was established according to the psychological pressure of college students. Secondly, the simulation test was conducted to compare the simulated results with the original data. The conclusion of the data fitting of the network model training set, verification set and test set were good and the error was very small. Finally, the detailed application of the algorithm and the model were described.


2021 ◽  
Vol 11 (19) ◽  
pp. 9276
Author(s):  
Alfred Anistoroaei ◽  
Adriana Berdich ◽  
Patricia Iosif ◽  
Bogdan Groza

Mobile device pairing inside vehicles is a ubiquitous task which requires easy to use and secure solutions. In this work we exploit the audio-video domain for pairing devices inside vehicles. In principle, we rely on the widely used elliptical curve version of the Diffie-Hellman key-exchange protocol and extract the session keys from the acoustic domain as well as from the visual domain by using the head unit display. The need for merging the audio-visual domains first stems from the fact that in-vehicle head units generally do not have a camera so they cannot use visual data from smartphones, however, they are equipped with microphones and can use them to collect audio data. Acoustic channels are less reliable as they are more prone to errors due to environmental noise. However, this noise can be also exploited in a positive way to extract secure seeds from the environment and audio channels are harder to intercept from the outside. On the other hand, visual channels are more reliable but can be more easily spotted by outsiders, so they are more vulnerable for security applications. Fortunately, mixing these two types of channels results in a solution that is both more reliable and secure for performing a key exchange.


Sign in / Sign up

Export Citation Format

Share Document