scholarly journals INTERVENSI MANUSIA TERHADAP KOMUNITAS RHIZOSFIR: REVIEW (Human Disturbance on Rhizosphere Communities: Review)

2020 ◽  
Vol 26 (1) ◽  
pp. 10
Author(s):  
Enny Widyati

AbstrakWalaupun tersembunyi di dalam tanah komunitas rhizosfir merupakan penentu kehidupan di muka bumi dan berperan penting pada pelestarian alam. Rhizosfir merupakan daerah di sekitar perakaran tanaman yang dihuni oleh berbagai mikrobia tanah yang berperan dalam menentukan pertumbuhan dan kesehatan tanaman. Struktur dan komposisi komunitas mikrobia sangat dipengaruhi oleh macam, konsentrasi dan komposisi eksudat akar. Perubahan yang terjadi pada tanaman (umumnya sangat dipengaruhi oleh aktivitas manusia) mempengaruhi komunitas rhizosfir, sebaliknya komunitas rhizosfir akan menentukan struktur tumbuhan dan fungsi ekosistem. Review ini membahas pengaruh aktivitas manusia yang mempengaruhi kualitas lingkungan terhadap komunitas mikrobia di rhizosfir, yang merupakan hasil kajian dari berbagai sumber terbaru yang dianalisis secara induktif. Aktivitas manusia yang dikaji meliputi praktek pertanian intensif, deforestasi hutan menjadi perkebunan serta perubahan iklim. Hasil kajian menunjukkan bahwa praktek monokulturisasi telah menurunkan biodiversitas mikrobia rhizosfir, menurunkan kinerja enzim tanah dan menurunkan keragaman dan konsentrasi senyawa glukosinolat untuk melawan patogen. Pengolahan tanah, pemupukan anorganik dan penggunaan pestisida telah menurunkan biodiversitas mikrobia rhizosfir. Sebaliknya pemupukan organik tidak berpengaruh terhadap biodiversitas mikrobia tanah. Perubahan fungsi hutan menjadi kebun intensif telah merubah dominansi kelompok mikrobia serta kemampuan mikrobia sesuai fungsinya di ekosistem. Perubahan iklim berdampak pada peningkatan suhu tanah, hal ini telah mengubah komposisi mikrobia rhizosfir. Perubahan komposisi, dominansi dan kemampuan mikrobia di rhizosfir tersebut dapat merubah komposisi populasi tumbuhan di atasnya. Hal ini dapat mengubah keseimbangan dan fungsi ekosistem yang berakibat pada berubahnya kesejahteraan manusia.AbstractEven though it is hidden underground, rhizosphere communities define the life in this earth planet and has an important role on nature preservation. Rhizosphere is the zone of soil adjacent immediately to plant roots which inhabited by varies species of beneficial soil microbes for facilitating plants growth and health. Human activities are strongly influence on plant performance. Alteration on plant growth and health statues determine rhizosphere communities that will define the vegetation structures and ultimately ecosystem functions. This paper discuss the negative influences of human activities (anthropogenic factors) on the environment to the rhizosphere communities. Especially the impacts of intensive farming, deforestation and climate changes. It is sourced from current referrences in inductive analysis. One of intensive farming management is monoculture that is not only drastically depleted microbes diversity in the rhizosphere hence decresed soil enzimes activities, but also reduced glucocynolates production, a crucial compound against pathogen. Whereas, tillage, fertilizers and pesticide application significantly diminished microbe biodiversity. Organic fertilizers, on the other hand, did not give crucial impacts this biodiversity. Modify forest into estate have changed domination of groups and lessened capability of phosphate solubilizers. While climate changes, that enhance soil temperature escalation, have altered rhizosphere microbes composition and structure. Replacement of composition, domination, abundance and capability of rhizosphere communities will modify composition and structure of vegetation aboveground. Eventually, will alter the ballance and functions of the ecosystem, which determine the wealth of human population in the earth.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowan Liu ◽  
Dingzhi Peng ◽  
Zongxue Xu

Quantifying the impacts of climate changes and human activities on runoff has received extensive attention, especially for the regions with significant elevation difference. The contributions of climate changes and human activities to runoff were analyzed using rainfall-runoff relationship, double mass curve, slope variation, and water balance method during 1961–2010 at the Jinsha River basin, China. Results indicate that runoff at upstream and runoff at midstream are both dominated by climate changes, and the contributions of climate changes to runoff are 63%~72% and 53%~68%, respectively. At downstream, climate changes account for only 13%~18%, and runoff is mainly controlled by human activities, contributing 82%~87%. The availability and stability of results were compared and analyzed in the four methods. Results in slope variation, double mass curve, and water balance method except rainfall-runoff relationship method are of good agreement. And the rainfall-runoff relationship, double mass curve, and slope variation method are all of great stability. The four methods and availability evaluation of them could provide a reference to quantification in the contributions of climate changes and human activities to runoff at similar basins in the future.


Author(s):  
Eduardo Marone ◽  
Martin Bohle

Geoscientists developed geoethics, an intra-disciplinary field of applied philosophical studies, during the last decade. Reaching beyond the sphere of professional geosciences, it led to professional, cultural, and philosophical approaches to handle the social-ecological structures of our planet ‘wherever human activities interact with the Earth system’. Against the backdrop of the COVID-19 and considering geoscientists’ experiences dealing with disasters (related to hazards like tsunamis, floods, climate changes.), this essay (1) explores the geoethical approach, (2) re-casts geoethics within western philosophical systems, such as the Kantian imperatives, Kohlberg scale of moral adequacy, Jonas’ imperative of responsibility, and (3) advances a ‘geoethical thesis’. The latter takes the form of a hypothesis of a much broader scope of geoethics than initially envisioned. That hypothesis appears by suspecting a relationship between the relative successes in the COVID-19 battle with the positioning of agents (individual, collective, institutional) into ethical frameworks. The turmoil caused by the COVID-19 pandemic, calls for the transfer of experiences between different disciplinary domains to further sustainable governance, hence generalising the geoethical approach. It is emphasized that only when behaving as responsible and knowledgeable citizens, then people of any trade (including [geo-]scientists) can transgress the boundaries of ordinary governance practices with legitimacy.


2019 ◽  
Author(s):  
Fons van der Plas ◽  
Thomas Schröder-Georgi ◽  
Alexandra Weigelt ◽  
Kathryn Barry ◽  
Sebastian Meyer ◽  
...  

ABSTRACTEarth is home to over 350,000 vascular plant species1 that differ in their traits in innumerable ways. Yet, a handful of functional traits can help explaining major differences among species in photosynthetic rate, growth rate, reproductive output and other aspects of plant performance2–6. A key challenge, coined “the Holy Grail” in ecology, is to upscale this understanding in order to predict how natural or anthropogenically driven changes in the identity and diversity of co-occurring plant species drive the functioning of ecosystems7, 8. Here, we analyze the extent to which 42 different ecosystem functions can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analyzed, the average percentage of variation in ecosystem functioning that they jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem functioning to plant traits analyzed no more than six traits, and when including either only six random or the six most frequently studied traits in our analysis, the average percentage of explained variation in across-year ecosystem functioning dropped to 4.8%. Furthermore, different ecosystem functions were driven by different traits, with on average only 12.2% overlap in significant predictors. Thus, we did not find evidence for the existence of a small set of key traits able to explain variation in multiple ecosystem functions across years. Our results therefore suggest that there are strong limits in the extent to which we can predict the long-term functional consequences of the ongoing, rapid changes in the composition and diversity of plant communities that humanity is currently facing.


Author(s):  
С.А. Запивалов

В Центральном районе Нечернозёмной зоны в 2018–2020 годах изучалось шесть систем ведения долголетнего сенокоса. В среднем за годы исследования применение техногенной системы позволило получить 3,86 т/га сухого вещества (СВ), применение интегрированной — 5,08 т/га СВ, техногенно-органической — 4,75–5,16 т/га СВ, техногенно-минеральной экстенсивной — 3,97–7,13 т/га СВ, техногенно-минеральной интенсивной — 6,60–8,85 т/га СВ, комбинированной — 7,03–7,25 т/га СВ. Существенное влияние на урожайность оказывали погодные условия. В засушливый год не был сформирован полноценный 2-й укос, что не позволило травостоям реализовать потенциал продуктивности. Более эффективно ограниченный запас влаги в почве использовался в техногенно-минеральной интенсивной системе. В условиях достаточной влагообеспеченности был получен полноценный второй укос, составляющий 30–50% сбора СВ за сезон. При улучшении условий увлажнения урожайность наиболее заметно повышалась при применении техногенно-минеральной интенсивной системы. Отмечена высокая экономическая эффективность применения всех изучаемых систем за счёт длительного использования травостоя. В зависимости от технологии рентабельность производства корма составляла 74–220%, себестоимость 1 корм. ед. — 3,12–5,75 руб. Для получения 65,2–88,0 ГДж, 5,1–6,8 тыс. корм. ед. и 781–1153 кг сырого протеина с 1 га на суходольных лугах Центрального района Нечернозёмной зоны рекомендуется применять техногенно-минеральную интенсивную систему ведения сенокоса. В случае недостаточной обеспеченности хозяйств материально-техническими ресурсами рекомендуются техногенная, интегрированная, техногенно-органическая и техногенно-минеральная экстенсивная системы ведения, позволяющие поддерживать высокое участие бобовых видов в травостое, что обеспечивает использование биологического источника азота и позволяет получить с 1 га сенокосных угодий 39,0–56,7 ГДж, 3,1–4,5 тыс. корм. ед. и 462–688 кг сырого протеина. Six management systems for long-term hayfields were tested in the Central Non-Chernozem region in 2018–2020. Without fertilization 3.86 t ha-1 of dry matter (DM) was obtained. Integrated farming resulted in 5.08 t DM ha-1, application of organic fertilizers — 4.75–5.16 t DM ha-1, extensive farming with mineral fertilization — 3.97–7.13 t DM ha-1, intensive farming with mineral fertilization — 6.60–8.85 t DM ha-1, combined management system — 7.03–7.25 t DM ha-1. Weather significantly affected crop productivity. Under drought grasses showed poor growth after the first cut leading to low yield. Intensive farming with mineral fertilization allowed more effective use of soil water resources. Sufficient water availability positively affected grass growth after the first cut resulting in 30–50% of DM yield for a season. The best performance was observed under intensive farming with mineral fertilization. All the management systems provided high economic efficiency due to a long-term cultivation of swards. Payback amounted to 74–220%, prime cost of 1 feed unit — 3.12–5.75 rubles. Intensive farming with mineral fertilization was recommended in order to obtain 65.2–88.0 GJ, 5.1–6.8 thousand feed units and 781–1153 kg of crude protein from 1 ha. In case of insufficient material and technical resources other above-mentioned systems can be used, except for the combined one. These management systems maintained high proportion of legumes in swards, an effective mean to obtain nitrogen via nitrogen-fixing bacteria. As a result, swards yielded 39.0–56.7 GJ, 3.1–4.5 thousand feed units and 462–688 kg of crude protein from 1 ha.


2020 ◽  
Vol 12 (2) ◽  
pp. 711 ◽  
Author(s):  
Wen Liu ◽  
Long Ma ◽  
Jilili Abuduwaili

A short lacustrine sediment core (41 cm) from Lake Bosten in arid central Asia was used to investigate the environmental changes that occurred in the past ≈150 years based on the superposition of climate and anthropogenic factors. Geochemical elements, total organic carbon (TOC) and nitrogen (TN), and stable isotope data (δ13Corg and δ15N) were used to identify abnormal environmental changes. The average C/N ratio in the sediments of Lake Bosten suggested that the organic matter in lake sediments was mainly from aquatic plants. The δ13Corg and δ15N in the lake sediments mainly reflect changes in the structure of the lake’s ecosystem. Before the 1960s, the primary productivity of the lake was relatively low with a relatively stable lake water environment. From the 1960s to the mid-1980s, the lake’s ecosystem was closely related to a significant decline in water levels caused by human activities and an increase in salinity. From the late 1980s to ≈2000, the aquatic plant structure of Lake Bosten did not change significantly. After 2000, the upper part of the sedimentary record suggested enhanced productivity due to urban and industrial development in the catchment area. However, sedimentary perspectives of the responses of different environmental proxies in sediments to human activities were anisochronous, and the increasing heavy metal (Pb and Cu) and P accumulations appeared in 1970, reflecting heightened human impacts. Through the comparison between the Aral Sea and Lake Bosten, it was inferred that, under the intervention of human activities, the lake experienced a completely different evolution trend. Humans, as geological agents, should protect our living environment while satisfying social development. The results will provide an important supplement to a large spatial scale study of the influences of human activities on the environment in Central Asia, which also has some significant implications for the protection of the ecological environment and the realization of sustainable development in arid regions.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Dingzhi Peng ◽  
Linghua Qiu ◽  
Jing Fang ◽  
Zhongyuan Zhang

Although a fragile climate region, the Taihu Lake Basin is among the most developed regions in China and is subjected to intense anthropogenic interference. In this basin, water resources encounter major challenges (e.g., floods, typhoons, and water pollution). In this study, the impacts of climate changes and human activities on hydrological processes were estimated to aid water resource management in developed regions in China. The Mann-Kendall test and cumulative anomaly curve were applied to detect the turning points in the runoff series. The year of 1982 divides the study period (1956~2008) into a baseline period (1956~1981) and a modified period (1982~2008). The double mass curve method and the hydrological sensitivity method based on the Budyko framework were applied to quantitatively attribute the runoff variation to climate changes and human activities. The results demonstrated that human activities are the dominant driving force of runoff variations in the basin, with a contribution of 83~89%; climate changes contributed to 11~17% of the variations. Moreover, the subregions of the basin indicated that humans severely disturbed the runoff variation, with contributions as high as 95~97%.


2008 ◽  
Vol 22 (16) ◽  
pp. 3155-3167 ◽  
Author(s):  
Zailin Huo ◽  
Shaoyuan Feng ◽  
Shaozhong Kang ◽  
Wangcheng Li ◽  
Shaojun Chen

2019 ◽  
Vol 76 (5) ◽  
pp. 740-752 ◽  
Author(s):  
Katrine Turgeon ◽  
Christian Turpin ◽  
Irene Gregory-Eaves

River flow regulation, fragmentation, and changes in water quality caused by dams have varying effects on aquatic biodiversity and ecosystem functions, but are not clearly resolved in boreal ecosystems. We adopted a multiscale approach to quantify fish community trajectories over 20 years using a network of sites spread across four reservoirs in two hydroelectricity complexes in northern Quebec, where other anthropogenic factors have been negligible. Across three spatial scales, we found little evidence of directional temporal trends in diversity relative to reference sites. Using beta-diversity analyses, we also detected a high degree of stability in fish composition over time and space at the complex and reservoir scales. However, changes in species assemblage following impoundment were detected at the scale of the sampling station. At this scale, we found that some species consistently benefited (coregonids and pikes) from impoundment, whereas others were detrimentally affected (suckers and one salmonid). Overall, we conclude that examining different scales is key when trying to understand the impacts of humans on biodiversity and in formulating management recommendations.


Sign in / Sign up

Export Citation Format

Share Document