scholarly journals IN VITRO AND IN SILICO EVALUATION OF XANTHINE OXIDASE INHIBITORY ACTIVITY OF QUERCETIN CONTAINED IN SONCHUS ARVENSIS LEAF EXTRACT

Author(s):  
Rini Hendriani ◽  
Nursamsiar Nursamsiar ◽  
Ami Tjitraresmi

Objective: The aim of the present study was to examine the inhibiting effects of quercetin contained in Sonchusarvensis leaf extract on the activity of xanthine oxidase, an essential enzyme for uric acid synthesis.Methods: Activity test was conducted in vitro by measuring the activity of xanthine oxidase using UV spectrophotometry and in silico by determining the interaction of quercetin and allopurinol (as comparation drug) with xanthine oxidase enzyme in terms of hydrogen bonds and binding free energy. Docking simulations were performed by Autodock4.2 package.Results: The active fraction, using the solvent n-hexane, ethyl acetate and water, tested the inhibitory activity of the xanthine oxidase enzyme in vitro obtained respectively IC50 of 263.19, 16.20 and 141.80 μg/ml. Isolates with highest activity identified as quercetin. The xanthine oxidase enzyme inhibitory activity insilico by molecular docking showed quercetin has free energy binding ˗7.71 kcal/mol, more negative than that of allopurinol ˗5.63 kcal/mol.Conclusion: This shows the affinity of quercetin stronger than that of allopurinol; so that it can be predicted that quercetin was more potential to inhibit xanthine oxidase enzyme activity. Thus the extract of the S. arvensis leaves containing the active compound quercetin was a potential use as antihyperuricemia.  

2017 ◽  
Vol 25 (8) ◽  
pp. 2351-2371 ◽  
Author(s):  
Humaira Zafar ◽  
Muhammad Hayat ◽  
Sumayya Saied ◽  
Momin Khan ◽  
Uzma Salar ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Rajagopal Kalirajan ◽  
Arumugasamy Pandiselvi ◽  
Byran Gowramma ◽  
Pandiyan Balachandran

Background: Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. Objective: Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. Methods: Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. Results: Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. Conclusion: The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.


Author(s):  
Karthikeyan Sekar ◽  
Rajeswary Hari ◽  
P. Ramya ◽  
N. Pusphavalli ◽  
R. Savitha

In the present investigation an attempt was made to evaluate the in vitro and in silico anti-gout arthritic activity of ethanolic (EECF) and aqueous extracts (AECF) of leaves of Cadaba fruticosa. The in vitro anti-gout arthritic activity of EECF and AECF was evaluated in terms of their inhibitory potential of xanthine oxidase, proteinase enzymes as well as protein denaturation and membrane stabilization using standard protocols. For the analysis of in silico anti-gout arthritic activity, molecular docking was performed for the GC–Ms derived 15 phyto constituents using patch dock server to find a suitable antagonistic ligand for the enzymes cyclooxygenase I and matrix metalloproteinase IV since they are the key enzymes responsible for pain and degenerative changes. Among the EECF and AECF extracts the EECF extract exhibited higher inhibitory activity of the xanthine oxidase and proteinase enzyme. At the concentrations of 800 and 1000μg/ml the observed inhibitory activity was almost similar to the positive drug Allopurinol and Acetyl salicylic acid. Based on the docking score and activation energy the two phyto constituents Quercetin and Cadabicinediacetate inhibited the enzymes cyclooxygenase I and matrix metalloproteinase IV and serves as a better antagonistic ligand to suppress the pain and joint destruction. It may be concluded that the leaves of Cadaba fruticosa may further developed into a effective drug for the management of gouty arthritis due to its multi targeted inhibitory activity of several inflammatory mediators.


Author(s):  
MUTHUSWAMY UMAMAHESWARI ◽  
Preetha Prabhu ◽  
KUPPUSAMY ASOKKUMAR ◽  
THIRUMALAISAMY SIVASHANMUGAM ◽  
Varadharajan Subhadradevi ◽  
...  

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 531-537
Author(s):  
Jan Asuncion ◽  
Mariane May Domingo ◽  
Rave Harvey Sienna ◽  
ZhaineMarille Villa ◽  
Jennifer Anne Loyola

Gout is characterized as an inflammation and warmth in the joints. It is associated with hyperuricemia wherein an upregulation of xanthine oxidase in purine degradation leads to increased levels of uric acid in the blood. Gout is not fatal. However, it affects one’s quality of life. Thus, this research primarily focuses in determining the inhibitory activity of xanthine oxidase in the methanolic leaf extract of bitaog (Calophyllumblancoi), bolongeta (Diospyrospilosanthera), and duhat (Syzygiumcumini) in gout. A quantitative-experimental research method was used in the study and the data were obtained by measuring the percent inhibition of the samples using UV-Vis spectrophotometer at 290 nm. The results showed that the methanolic leaf extract of above stated plants exhibited exemplary inhibition in comparison with the standard drug, allopurinol. The IC50  value determines the ability of the inhibitor to decrease the biotransformation of a substrate. The principle behind IC50 is, the lower the value the higher the inhibition. The bitaog (Calophyllumblancoi) trials have the lowest IC50 value with an average of 124.3 after the standard drug, followed by bolongeta (Diospyrospilosanthera) have an average of 155.3 IC50 value. Then duhat (Syzygiumcumini) showed the highest IC50 an average of 208.8. The bitaog (Calophyllumblancoi), next to allopurinol, showed the highest inhibition among all the extracts followed by the bolongeta (Diospyrospilosanthera). The least inhibitory activity was observed in duhat (Syzygiumcumini). Hence, it can be concluded that bitaog (Calophyllumblancoi), bolongeta (Diospyrospilosanthera), and duhat (Syzygiumcumini) can inhibit xanthine oxidase using in vitro analysis.


2019 ◽  
Vol 10 (01) ◽  
pp. 1-14 ◽  
Author(s):  
Elena Alvareda ◽  
Federico Iribarne ◽  
Victoria Espinosa ◽  
Pablo Miranda ◽  
Daniela Santi ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ananta Swargiary ◽  
Manita Daimari

Abstract Background The practice of ethnomedicine remains to be the primary source of healthcare in many parts of the world, especially among the tribal communities. However, there is a lack of scientific outlook and investigation to authenticate and validate their medicinal values. Objective The present study investigated the trace and heavy metal content, bioactive compounds, α-amylase, and α-glucosidase inhibitory activity of Rauvolfia tetraphylla and Oroxylum indicum using in vitro and in silico methods. Methods Trace and heavy metal content of Rauvolfia tetraphylla and Oroxylum indicum were detected using Atomic Absorption Spectroscopy. Bioactive compounds were analyzed and identified by the GC-MS technique. α-Amylase and α-glucosidase inhibitory activity of the plants were studied using the spectrophotometric method using UV/VIS-Spectrophotometer. In silico molecular docking was carried out in AutoDock vina and the structures visualized using PyMol and Biovia Discovery Studio software. Statistical and graphical representations were performed using Excel and OriginPro. Results The trace and heavy metallic content such as Zn, Ni, Pb, Cr, Cu, and Mn were reported from both the plant. No Cd was detected in both the plants. GC-MS analysis revealed four major compounds in R. tetraphylla and seven in O. indicum. Biochemical studies showed that the leaf extract of O. indicum posses the strongest α-amylase and α-glucosidase inhibitory activity. R. tetraphylla showed weaker enzyme inhibition. Molecular docking study revealed that three compounds from O. indicum (O2, O3, and O6) and two from R. tetraphylla (R1 and R2) showed strong binding affinity to α-amylase and α-glucosidase. However, leaf extract of O. indicum showed better binding affinity with the enzymes compared to R. tetraphylla. Conclusion Inhibition of α-amylase and α-glucosidase in an important strategy of diabetes control. The present study revealed the in vitro α-amylase and α-glucosidase inhibitory activity of Rauvolfia tetraphylla and Oroxylum indicum. In conclusion, the study identified that the leaf extract of O. indicum as a potential inhibitor of glucose metabolizing enzymes and could be a source of antidiabetic agents.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Shivraj H. Nile ◽  
Chandrahasy N. Khobragade

The methanolic extract of Tephrosia purpurea (Leguminosae) shoots was evaluated in-vitro for its anti-inflammatory and xanthine oxidase inhibitory activity. Anti-inflammatory activity was measured by the Diene-conjugate, HET-CAM and β-glucuronidase methods. The enzyme inhibitory activity was tested against isolated cow milk xanthine oxidase. The average anti-inflammatory activity of T. purpurea shoot extract in the concentration range of 1-2 μg/mL in the reacting system revealed significant anti-inflammatory activities, which, as recorded by the Diene-conjugate, HET-CAM and β-glucuronidase assay methods, were 45.4, 10.5, and 70.5%, respectively. Screening of the xanthine oxidase inhibitory activity of the extract in terms of kinetic parameters revealed a mixed type of inhibition, wherein the Km and Vmax values in the presence of 25 to 100 μg/mL shoot extract was 0.20 mM/mL and 0.035, 0.026, 0.023 and 0.020 μg/min, while, for the positive control, the Km and Vmax values were 0.21 mM/mL and 0.043 μg/min, respectively. These findings suggest that T. purpurea shoot extract may possess constituents with good medicinal properties that could be exploited to treat the diseases associated with oxidative stress, xanthine oxidase enzyme activity and inflammation.


2021 ◽  
Vol 32 (4) ◽  
pp. 889-894
Author(s):  
Yudi Purnomo ◽  
Juliah Makdasari ◽  
Faiqoh Inayah Fatahillah

Abstract Objectives In food ingestion, alpha-glucosidase (α-glucosidase) and alpha-amylase (α-amylase) are enzymes that are responsible to convert a carbohydrate into glucose. Inhibition of both enzyme activities can prolong absorption of glucose in intestine and reduce post-prandial increase of blood glucose concentration, thus, it is beneficial for type-2 diabetes treatment. Traditionally, Urena lobata (U. lobata) has been used to manage diabetes, but the scientific proof of this claim remains scarce. Therefore, the objective of this study to examine the anti-diabetic potential of U. lobata leaf extract through inhibition of α-amylase and α-glucosidase. Methods U. lobata leaf extract was obtained through extraction process using ethanol and the chemical compounds in the extract were analyzed by liquid chromatography–mass spectra (LC–MS). The inhibitory activity of U. lobata on α-glucosidase and α-amylase was evaluated by in silico using docking server, whereas in vitro enzymatic assays were using para-nitrophenyl-α-d-glucopyranoside (α-NPG) and starch as substrates. The data were presented as mean ± SD and the IC50 value was calculated using SPSS. Results U. lobata leaf extract showed inhibitory activity on α-glucosidase and α-amylase with the IC50 value was 43.73 and 83.73 μg/mL, respectively, meanwhile, acarbose as standard has IC50 value at 1.14 and 0.08 μg/mL. Molecular docking study indicated β-sitosterol and stigmasterol from U. lobata extract have a huge inhibitory activity both on α-amylase and α-glucosidase based on inhibition constant (Ki) value. Conclusions Ethanolic extract of U. lobata showed inhibition activity on α-glucosidase stronger than on α-amylase as antidiabetic.


Sign in / Sign up

Export Citation Format

Share Document