scholarly journals DEVELOPMENT OF ZOLMITRIPTAN MOUTH DISSOLVING FILMS: FORMULATION VARIABLES, MECHANICAL PROPERTIES, AND IN VITRO DRUG RELEASE STUDIES

Author(s):  
SUDHIR MADDELA ◽  
BUCHI N. NALLURI

Objective: The objective of the present investigation is to prepare zolmitriptan (ZOL) mouth dissolving films (MDFs) and to investigate the influence of formulation variables on physicomechanical, chemical, and drug release properties of the prepared MDFs. Methods: The MDFs were prepared by solvent casting technique using wet film applicator. The impact of hydroxypropyl methylcellulose of different viscosity grades (hydroxy propyl methyl cellulose [HPMC] E3, E5, and E15), plasticizers (glycerol and polyethylene glycol [PEG]-400), and solubilizing agents (polyvinyl pyrrolidone [PVP K30] and sodium lauryl sulfate [SLS]) on physicomechanical, chemical, and drug release properties were evaluated. The MDFs were also characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry studies. Results: The MDFs prepared were transparent and smooth and showed no recrystallization. The tensile strength of the MDFs increased significantly with an increase in polymer viscosities, and about a 2.63-fold increase in tensile strength was observed for HPMC E15 MDFs compared to E3, whereas an increase in film thickness resulted in brittle MDFs with low tensile strength. Similar results were observed with percent elongation and folding endurance of the MDFs. In vitro, drug release studies indicate that higher film thickness and polymer viscosities delayed the MDF disintegration and, in turn, the ZOL release. Addition of PVP K30 and SLS to HPMC E3 formulations resulted in 1.66- and 1.53-fold increase in ZOL release rates. Conclusion: Overall, F7 formulation showed quicker disintegration (within 11 s) and ZOL release rates (within 180 s) along with good physicomechanical properties. These results indicated that the disintegration and drug release of ZOL can be enhanced to a greater extent by optimizing formulation variables in MDFs.

Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


2018 ◽  
Vol 194 ◽  
pp. 311-318 ◽  
Author(s):  
Muthukumaran C. ◽  
Kanmani B.R. ◽  
Sharmila G. ◽  
Manoj Kumar N. ◽  
Shanmugaprakash M.

Author(s):  
Jasvanth E ◽  
Teja D ◽  
Mounika B ◽  
Buchi N Nalluri

Objective: The present investigation was aimed at preparation and evaluation of mouth dissolving films (MDFs) of Ramipril to enhance patient convenience, compliance and to improve bioavailability. Methods: MDFs with 0.5% w/w Ramipril were prepared by a solvent casting method using a wet film applicator. The effects of film formers, wetting/solubilizing, saliva stimulating agents and film modifiers on the physicomechanical and in vitro Ramipril release from MDFs were evaluated. Results: The MDFs prepared were transparent, smooth and showed no re-crystallization upon storage. MDFs casted with hydroxypropyl methylcellulose (HPMC) E3 as film former and polyethylene glycol (PEG-400) as plasticizer showed superior Ramipril release rates and good physicomechanical properties when compared to MDFs with E5 and E15 as film formers. HPMC E3 MDFs with polyvinyl pyrrolidone K30 (PVP K30) and sodium lauryl sulphate (SLS) gave superior drug release properties than MDFs without PVP K30 and SLS. The HPMC E3 MDFs with citric acid (CA) as saliva stimulating and xylitol as soothing agent gave significantly superior in vitro drug release than the MDFs without CA and xylitol. Release kinetics data reveals diffusion as a drug release mechanism. Conclusion: From the obtained results, it can be concluded that the administration of Ramipril as MDF may provide a quick onset of action with enhanced oral bioavailability and therapeutic efficacy.


2008 ◽  
Vol 322 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Dayong Teng ◽  
Jingli Hou ◽  
Xinge Zhang ◽  
Xin Wang ◽  
Zhen Wang ◽  
...  

2017 ◽  
Vol 9 (6) ◽  
pp. 85
Author(s):  
G. Ravi ◽  
N. Vishal Gupta

Objective: The objective of present investigation was to develop rivastigmine tartrate transdermal film employing factorial design.Methods: The formulations were designed by Design-Expert software-version10. A series of films were prepared by solvent casting method using polymers, plasticizer, permeation enhancer and other solvents. Transdermal films were evaluated for flatness, drug content, tensile strength, in vitro drug release and ex vivo skin permeation study.Results: The flatness was found 100% (percentage) for all film formulations. The drug content of transdermal film was found in the range of 96.51±0.2 to 98.81±0.3%. The tensile strength of transdermal film was found in the range of 6.28±0.06 to 11.56±0.03 N/mm2 (newton/millimeter2) and in vitro drug release at 24th h (hour) was found in the range of 86.24±0.25 to 96.1±0.48%% for various formulations and ex vivo skin permeation study results at 24th h was found in the range of 85.83±0.74 to 97.36±0.93%.Conclusion: These results support the feasibility of developing transdermal film of rivastigmine tartrate for human applications. Thus, transdermal delivery of rivastigmine tartrate film is a safe, painless and cost effective drug delivery system for Alzheimer’s patients.


Sign in / Sign up

Export Citation Format

Share Document