Synthesis, Characterization and in-vitro drug release studies of a macromolecular prodrug of Didanosine.

Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.

2017 ◽  
Vol 5 (02) ◽  
pp. 24-28
Author(s):  
B. Kumar ◽  
G. Jeyabalan

Metformin/Gliclazide niosomes were formulated with span 60 by ether injection method. Three batches MG1-MG3 were prepared in order to study influence of drug polymer ratio on the niosomes formation and in vitro drug release. The formulated niosomes were characterized by drug entrapment, vesicle size determination, and in vitro drug release. Optimized concentration of span 60 and cholesterol was found to be 1:1. In the in-vitro study, niosomes formulation of MG1 showed high percentage of drug release, 40.18 to 45.75% for about 8 hrs. This indicated that this batch of niosomes formulation exhibit sustained drug release pattern as the niosomes act as reservoir system for continuous delivery of drug. The quantity of Metformin/Gliclazide present in the niosomes and the release medium were estimated by a validated HPLC method. The formulated niosomes had acceptable physicochemical characters and released the drug over 6-8 h. The data obtained from in vitro release studies were fitted with various kinetic models and was found to follow Higuchi kinetics.


Author(s):  
Ritesh Kumar ◽  
Kashmira J. Gohil

Objective: The aim of the present study was to increase the absolute bioavailability of famotidine, enhanced patient compliance in the treatment of peptic ulcer by increasing its gastric residence time and controlled local release of drug upto 12 hours. Materials and Methods: Hydrodynamically balanced capsules of famotidine were prepared, consisting of floating matrix granules, which formed hydrogels. Effects of different formulation variables namely hypromellose (HPMC 4000 cps, HPMC 5600 cps, HPMC 15000 cps), effervescent agent (potassium bicarbonate) and mixing time were studied. Optimization study included 23 full factorial design with t50% and t80% as the kinetic parameters (response variable). Matrix characterization included scanning electron microscopy. All prepared formulations were evaluated to various parameters such as micromeritics properties, % buoyancy and in vitro drug release studies. Results and Discussion: The optimized formulation (F4) remains buoyant for more than 12 hrs. The in-vitro drug release study indicated that increasing the viscosity of HPMC resulted in sustained drug release with long floating duration. SEM studies showed definite entrapment of the drug in the matrix and hydrogel formation. Results showed a pH independent but polymer viscosity dependent drug release profile. The release kinetics followed Higuchi model and mechanism of release was found to be non-Fickian diffusion. Conclusion: Famotidine-loaded hydrodynamically balanced capsules were successfully prepared and prove to be useful for prolonged gastric residence of the drug, better bioavailability, patient compliance and improve delivery for enhanced anti-ulcer activity.


2020 ◽  
Vol 11 (2) ◽  
pp. 1807-1813
Author(s):  
Naga Sujan M ◽  
Kunal K Mehta ◽  
Amit B Patil ◽  
Anusha Vajhala

The present study is aimed to formulate, characterization, and evaluate oral immediate-release tablets of Ethosuximide. It is employed as an anti-epileptic agent used in the treatment of epilepsy, in all the age groups who were≥ 1 year. The dosage form is formulated by directly compressing the blend and granulating the powder blend by wet granulation methods. The optimized formulation is achieved by the trial and error method by changing the concentration of lactose monohydrate and di-basic calcium phosphate dehydrate as diluents, sodium starch glycolate as Super-dis-integrant, rice Starch as an intra-granular binder, hydroxypropyl cellulose as binder talc as a lubricant. Evaluation parameters such as micrometric properties, disintegration time along with in-vitro drug release studies were performed for characterizing the dosage form. In-vitro drug release studies were carried out using 0.1 N HCl as dissolution media with 75 rpm and temperature of 370C ± 50C by employing USP apparatus II (Paddle type). Estimation of the % drug release of the tablet was carried out using the UV method. The prepared formulation and the marketed formulation were tested for the in-vitro drug release profile and the prepared formulation was compared with the marketed formulation. All the evaluated result was found to be within the specifications. Therefore, from the obtained evaluation results F6 trail was selected as the best formulation.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


2021 ◽  
Vol 4 (2) ◽  
pp. 99-109
Author(s):  
Priyanka Singh ◽  
Amit Kumar Shrivastava ◽  
Sachin Kumar ◽  
Manish Dhar Dwivedi

This study aimed to improve the dissolution rate of aceclofenac and release the drug in a controlled manner over a period of 24 hours. Matrix tablets were prepared by direct compression method, using hydrophilic polymers (HPMC/guar gum). Matrix tablets were prepared by wet granulation method using different hydrophilic polymers (HPMC/guar gum). Tablets were evaluated for in vitro drug release profile in phosphate buffer with pH 6.8 (without enzymes). The thickness and hardness of prepared tablets were 3.23 ± 0.035 to 3.28 ± 0.008 mm and 3.26 ± 0.115 to 3.60 ± 0.200 kg/cm2, respectively. The friability was within the acceptable limits of pharmacopoeial specifications (0.31 to 0.71%), which indicates the good mechanical strength of the tablets. Drug release was retarded with an increase in polymer concentration due to the gelling property of polymers. The in vitro drug release from the proposed system was best explained by Higuchi’s model, indicating that drug release from tablets displayed a diffusion-controlled mechanism. The results clearly indicate that guar gum could be a potential hydrophilic carrier in developing oral controlled drug delivery systems. Based on the study results, formulations F8 was selected as the best formulation.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 235-239
Author(s):  
NILESH M MAHAJAN ◽  
Kalyanee Wanaskar ◽  
Yogesh Bhutada ◽  
Raju Thenge ◽  
Vaibhav Adhao

The aim of present study is to formulate and evaluate extended release matrix tablet of Nateglinide by direct compression method using different polymer like HPMC K4 and HPMC K15. Matrix tablet of nateglidine were prepared in combination with the polymer HPMC K4, HPMC K15, along with the excipients and the formulations were evaluated for tablet properties and in vitro drug release studies. Nateglinide matrix tablet prepared by using polymer such as HPMC K4 and HPMC K15,  it was found that HPMC K15 having higher viscosity as compare to HPMC K4 therefore different concentration of polymer were studied to extend the drug release up to 12 h. The tablets of Nateglinide prepared by direct compression had acceptable physical characteristics and satisfactory drug release. The study demonstrated that as far as the formulations were concerned, the selected polymers proved to have an acceptable flexibility in terms of in-vitro release profile. In present the study the percent drug release for optimize batch was found to 94.62%.  Hence it can be conclude that Nateglinide extended release matrix tablet can prepared by using HPMC. The swollen tablet also maintains its physical integrity during the drug release study Keywords: Tablet, in-vitro drug release, Nateglinide, HPMC


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


Sign in / Sign up

Export Citation Format

Share Document